The LRRK2 N-terminal domain influences vesicle trafficking: impact of the E193K variant.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
02 03 2020
Historique:
received: 21 06 2019
accepted: 12 02 2020
entrez: 4 3 2020
pubmed: 4 3 2020
medline: 15 12 2020
Statut: epublish

Résumé

The LRRK2 protein consists of multiple functional domains, including protein-binding domains at its N and C-terminus. Mutations in the Leucine-rich repeat kinase 2 gene (LRRK2) have been linked to familial and sporadic Parkinson's disease (PD). We have recently described a novel variant falling within the N-terminal armadillo repeats, E193K. Herein, our aim is to investigate the functional impact of LRRK2 N-terminal domain and the E193K variant on vesicle trafficking. By combining Total Internal Reflection Fluorescence (TIRF) microscopy and a synaptopHluorin assay, we found that expression of a construct lacking the N-terminal domain increases the frequency and amplitude of spontaneous synaptic events. Complementary biochemical approaches showed that the E193K variant alters the binding properties of LRRK2, decreases LRRK2 binding to synaptic vesicles, and promotes vesicle fusion. Our results confirm the physiological and pathological relevance of the nature of the LRRK2-associated macro-molecular complex solidifying the idea that different pathological mutations critically alter the scaffolding function of LRRK2 resulting in a perturbation of the vesicular trafficking as a common denominator.

Identifiants

pubmed: 32123243
doi: 10.1038/s41598-020-60834-5
pii: 10.1038/s41598-020-60834-5
pmc: PMC7052203
doi:

Substances chimiques

Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 EC 2.7.11.1

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

3799

Références

Wakabayashi, K. et al. The Lewy body in Parkinson’s disease and related neurodegenerative disorders. Mol. Neurobiol. 47, 495–508 (2013).
doi: 10.1007/s12035-012-8280-y
Cookson, M. R. The role of leucine-rich repeat kinase 2 (LRRK2) in Parkinson’s disease. Nat. Rev. Neurosci. 11, 791–797 (2010).
doi: 10.1038/nrn2935
Marin, I. The Parkinson disease gene LRRK2: evolutionary and structural insights. Mol. Biol. Evol. 23, 2423–33 (2006).
doi: 10.1093/molbev/msl114
Carrion, M. D. P. et al. The LRRK2 G2385R variant is a partial loss-of-function mutation that affects synaptic vesicle trafficking through altered protein interactions. Sci. Rep. 7, 5377 (2017).
doi: 10.1038/s41598-017-05760-9
Piccoli, G. et al. LRRK2 controls synaptic vesicle storage and mobilization within the recycling pool. J. Neurosci. 31, 2225–2237 (2011).
doi: 10.1523/JNEUROSCI.3730-10.2011
Piccoli, G. et al. LRRK2 binds to neuronal vesicles through protein interactions mediated by its C-terminal WD40 domain. Mol. Cell. Biol. https://doi.org/10.1128/MCB.00914-13 (2014).
doi: 10.1128/MCB.00914-13
Cirnaru, M. D. et al. LRRK2 kinase activity regulates synaptic vesicle trafficking and neurotransmitter release through modulation of LRRK2 macro-molecular complex. Front. Mol. Neurosci. 7, 49 (2014).
doi: 10.3389/fnmol.2014.00049
Beccano-Kelly, D. A. et al. Synaptic function is modulated by LRRK2 and glutamate release is increased in cortical neurons of G2019S LRRK2 knock-in mice. Front. Cell Neurosci. 8, 301 (2014).
doi: 10.3389/fncel.2014.00301
Beccano-Kelly, D. A. et al. LRRK2 overexpression alters glutamatergic presynaptic plasticity, striatal dopamine tone, postsynaptic signal transduction, motor activity and memory. Hum. Mol. Genet. https://doi.org/10.1093/hmg/ddu543 (2014).
doi: 10.1093/hmg/ddu543
Volta, M. et al. Initial elevations in glutamate and dopamine neurotransmission decline with age, as does exploratory behavior, in LRRK2 G2019S knock-in mice. Elife 6, (2017).
Belluzzi, E. et al. LRRK2 phosphorylates pre-synaptic N-ethylmaleimide sensitive fusion (NSF) protein enhancing its ATPase activity and SNARE complex disassembling rate. Mol. Neurodegener. 11, 1 (2016).
doi: 10.1186/s13024-015-0066-z
Matta, S. et al. LRRK2 controls an EndoA phosphorylation cycle in synaptic endocytosis. Neuron 75, 1008–1021 (2012).
doi: 10.1016/j.neuron.2012.08.022
Bedford, C., Sears, C., Perez-Carrion, M., Piccoli, G. & Condliffe, S. B. LRRK2 Regulates Voltage-Gated Calcium Channel Function. Front. Mol. Neurosci. 9, 35 (2016).
doi: 10.3389/fnmol.2016.00035
Marte, A. et al. LRRK2 phosphorylation on synapsin I regulates glutamate release at presynaptic sites. J. Neurochem. https://doi.org/10.1111/jnc.14778 (2019).
doi: 10.1111/jnc.14778
Rosenbusch, K. E. & Kortholt, A. Activation Mechanism of LRRK2 and Its Cellular Functions in Parkinson’s Disease. Parkinsons Dis. 2016, 7351985 (2016).
pubmed: 27293958 pmcid: 4880697
Tan, E. K. et al. LRRK2 G2385R modulates age at onset in Parkinson’s disease: A multi-center pooled analysis. Am. J. Med. Genet. B Neuropsychiatr. Genet. 150B, 1022–1023 (2009).
doi: 10.1002/ajmg.b.30923
Xie, C.-L. et al. The association between the LRRK2 G2385R variant and the risk of Parkinson’s disease: a meta-analysis based on 23 case-control studies. Neurol. Sci. 35, 1495–1504 (2014).
doi: 10.1007/s10072-014-1878-2
Perez Carrion, M. et al. The LRRK2 Variant E193K Prevents Mitochondrial Fission Upon MPP+ Treatment by Altering LRRK2 Binding to DRP1. Front. Mol. Neurosci. 11, 64 (2018).
doi: 10.3389/fnmol.2018.00064
Guaitoli, G. et al. Structural model of the dimeric Parkinson’s protein LRRK2 reveals a compact architecture involving distant interdomain contacts. Proc. Natl. Acad. Sci. USA 113, E4357–4366 (2016).
doi: 10.1073/pnas.1523708113
Daniele, F., Di Cairano, E. S., Moretti, S., Piccoli, G. & Perego, C. TIRFM and pH-sensitive GFP-probes to evaluate neurotransmitter vesicle dynamics in SH-SY5Y neuroblastoma cells: cell imaging and data analysis. J. Vis. Exp. https://doi.org/10.3791/52267 (2015).
Lavalley, N. J., Slone, S. R., Ding, H., West, A. B. & Yacoubian, T. A. 14-3-3 Proteins regulate mutant LRRK2 kinase activity and neurite shortening. Hum. Mol. Genet. 25, 109–122 (2016).
doi: 10.1093/hmg/ddv453
Harvey, K. & Outeiro, T. F. The role of LRRK2 in cell signalling. Biochem. Soc. Trans. https://doi.org/10.1042/BST20180464 (2018).
doi: 10.1042/BST20180464
Porras, P. et al. A visual review of the interactome of LRRK2: Using deep-curated molecular interaction data to represent biology. Proteom. 15, 1390–1404 (2015).
doi: 10.1002/pmic.201400390
Manzoni, C., Denny, P., Lovering, R. C. & Lewis, P. A. Computational analysis of the LRRK2 interactome. PeerJ 3, e778 (2015).
doi: 10.7717/peerj.778
Antoniou, N. et al. A motif within the armadillo repeat of Parkinson’s-linked LRRK2 interacts with FADD to hijack the extrinsic death pathway. Sci. Rep. 8, 3455 (2018).
doi: 10.1038/s41598-018-21931-8
Sejwal, K. et al. Cryo-EM analysis of homodimeric full-length LRRK2 and LRRK1 protein complexes. Sci. Rep. 7, 8667 (2017).
doi: 10.1038/s41598-017-09126-z
Fletcher, K. et al. The WD40 domain of ATG16L1 is required for its non-canonical role in lipidation of LC3 at single membranes. EMBO J. 37 (2018).
Xu, C. & Min, J. Structure and function of WD40 domain proteins. Protein Cell 2, 202–214 (2011).
doi: 10.1007/s13238-011-1018-1
Stirnimann, C. U., Petsalaki, E., Russell, R. B. & Müller, C. W. WD40 proteins propel cellular networks. Trends Biochem. Sci. 35, 565–574 (2010).
doi: 10.1016/j.tibs.2010.04.003
Tewari, R., Bailes, E., Bunting, K. A. & Coates, J. C. Armadillo-repeat protein functions: questions for little creatures. Trends Cell Biol. 20, 470–481 (2010).
doi: 10.1016/j.tcb.2010.05.003
Maas, J. W. J., Yang, J. & Edwards, R. H. Endogenous Leucine-Rich Repeat Kinase 2 Slows Synaptic Vesicle Recycling in Striatal Neurons. Front. Synaptic Neurosci. 9, 5 (2017).
doi: 10.3389/fnsyn.2017.00005
Monfrini, E. & Di Fonzo, A. Leucine-Rich Repeat Kinase (LRRK2) Genetics and Parkinson’s Disease. Adv. Neurobiol. 14, 3–30 (2017).
doi: 10.1007/978-3-319-49969-7_1
Leandrou, E. et al. Kinase activity of mutant LRRK2 manifests differently in hetero-dimeric vs. homo-dimeric complexes. Biochem. J. 476, 559–579 (2019).
doi: 10.1042/BCJ20180589
Rudenko, I. N. et al. The G2385R variant of leucine-rich repeat kinase 2 associated with Parkinson’s disease is a partial loss-of-function mutation. Biochem. J. 446, 99–111 (2012).
doi: 10.1042/BJ20120637
Gloeckner, C. J., Boldt, K., Schumacher, A., Roepman, R. & Ueffing, M. A novel tandem affinity purification strategy for the efficient isolation and characterisation of native protein complexes. Proteom. 7, 4228–4234 (2007).
doi: 10.1002/pmic.200700038
Granseth, B., Odermatt, B., Royle, S. J. & Lagnado, L. Clathrin-mediated endocytosis is the dominant mechanism of vesicle retrieval at hippocampal synapses. Neuron 51, 773–786 (2006).
doi: 10.1016/j.neuron.2006.08.029
Pischedda, F. et al. Cryopreservation of Primary Mouse Neurons: The Benefit of Neurostore Cryoprotective Medium. Front. Cell Neurosci. 12, 81 (2018).
doi: 10.3389/fncel.2018.00081
Pischedda, F. & Piccoli, G. The IgLON Family Member Negr1 Promotes Neuronal Arborization Acting as Soluble Factor via FGFR2. Front. Mol. Neurosci. 8, 89 (2015).
pubmed: 26793057
Huttner, W. B., Schiebler, W., Greengard, P. & De Camilli, P. Synapsin I (protein I), a nerve terminal-specific phosphoprotein. III. Its association with synaptic vesicles studied in a highly purified synaptic vesicle preparation. J. Cell Biol. 96, 1374–1388 (1983).
doi: 10.1083/jcb.96.5.1374
Messa, M. et al. Tyrosine phosphorylation of synapsin I by Src regulates synaptic-vesicle trafficking. J. Cell. Sci. 123, 2256–2265 (2010).
doi: 10.1242/jcs.068445

Auteurs

Algerta Marku (A)

Department of Excellence of Pharmacological and Biomolecular Sciences Università degli Studi di Milano, Milano, Italy.

Maria Dolores Perez Carrion (MDP)

CIBIO, Università degli Studi di Trento, Italy & Dulbecco Telethon Institute, Trento, Italy.
Facultad de Farmacia, Universidad CEU San Pablo, Madrid, Spain.

Francesca Pischedda (F)

CIBIO, Università degli Studi di Trento, Italy & Dulbecco Telethon Institute, Trento, Italy.

Antonella Marte (A)

Department of Experimental Medicine, University of Genova, Genova, Italy.
IRCCS Ospedale Policlinico San Martino, 16132, Genova, Italy.

Zeila Casiraghi (Z)

Department of Excellence of Pharmacological and Biomolecular Sciences Università degli Studi di Milano, Milano, Italy.

Paola Marciani (P)

Department of Excellence of Pharmacological and Biomolecular Sciences Università degli Studi di Milano, Milano, Italy.

Felix von Zweydorf (F)

German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.

Christian Johannes Gloeckner (CJ)

German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.
University of Tübingen, Center for Ophthalmology, Institute for Ophthalmic Research, 72076, Tübingen, Germany.

Franco Onofri (F)

Department of Experimental Medicine, University of Genova, Genova, Italy.
IRCCS Ospedale Policlinico San Martino, 16132, Genova, Italy.

Carla Perego (C)

Department of Excellence of Pharmacological and Biomolecular Sciences Università degli Studi di Milano, Milano, Italy. carla.perego@unimi.it.

Giovanni Piccoli (G)

CIBIO, Università degli Studi di Trento, Italy & Dulbecco Telethon Institute, Trento, Italy. giovanni.piccoli@unitn.it.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH