High-Throughput Screening to Predict Chemical-Assay Interference.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
04 03 2020
Historique:
received: 16 08 2019
accepted: 31 01 2020
entrez: 6 3 2020
pubmed: 7 3 2020
medline: 27 11 2020
Statut: epublish

Résumé

The U.S. federal consortium on toxicology in the 21

Identifiants

pubmed: 32132587
doi: 10.1038/s41598-020-60747-3
pii: 10.1038/s41598-020-60747-3
pmc: PMC7055224
doi:

Types de publication

Journal Article Research Support, N.I.H., Intramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

3986

Références

Collins, F. S., Gray, G. M. & Bucher, J. R. Transforming Environmental Health Protection. Science (80-.). 319, 906–907 (2008).
doi: 10.1126/science.1154619
Thomas, R. The US Federal Tox21 Program: A strategic and operational plan for continued leadership. ALTEX 35, 163–168 (2018).
doi: 10.14573/altex.1803011
Kleinstreuer, N. C. et al. Phenotypic screening of the ToxCast chemical library to classify toxic and therapeutic mechanisms. Nat. Biotechnol. 32, 583–91 (2014).
doi: 10.1038/nbt.2914
Sittampalam, G. et al. Assay Guidance Manual. Assay Guid. Man. 305–336. doi:PMID:22553881 (2016).
Inglese, J. et al. High-throughput screening assays for the identification of chemical probes. Nat. Chem. Biol. 3, 466–479 (2007).
doi: 10.1038/nchembio.2007.17
Thorne, N., Inglese, J. & Auld, D. S. Illuminating Insights into Firefly Luciferase and Other Bioluminescent Reporters Used in Chemical Biology. Chem. Biol. 17, 646–657 (2010).
doi: 10.1016/j.chembiol.2010.05.012
Fan, F. & Wood, K. V. Bioluminescent assays for high-throughput screening. Assay Drug Dev. Technol. 5, 127–36 (2007).
doi: 10.1089/adt.2006.053
Zhu, H. & Xia, M. High-throughput screening assays in toxicology. (2016).
Auld, D. S. & Inglese, J. Interferences with Luciferase Reporter Enzymes Assay Guidance Manual. 1, 1–14 (2016).
Simeonov, A. et al. Fluorescence spectroscopic profiling of compound libraries. J. Med. Chem. 51, 2363–2371 (2008).
doi: 10.1021/jm701301m
Thorne, N. et al. Firefly Luciferase in Chemical Biology: A Compendium of Inhibitors, Mechanistic Evaluation of Chemotypes, and Suggested Use As a Reporter. Chem. Biol. 19, 1060–1072 (2012).
doi: 10.1016/j.chembiol.2012.07.015
Gul, S. & Gribbon, P. Exemplification of the challenges associated with utilising fluorescence intensity based assays in discovery. Expert Opin. Drug Discov. 5, 681–690 (2010).
doi: 10.1517/17460441.2010.495748
Dahlin, J. L. et al. Post-HTS case report and structural alert: Promiscuous 4-aroyl-1,5-disubstituted-3-hydroxy-2H-pyrrol-2-one actives verified by ALARM NMR. Bioorganic Med. Chem. Lett. 25, 4740–4752 (2015).
doi: 10.1016/j.bmcl.2015.08.020
Su, B. H. et al. Rule-based classification models of molecular autofluorescence. J. Chem. Inf. Model. 55, 434–445 (2015).
doi: 10.1021/ci5007432
Baell, J. B. & Holloway, G. A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem. 53, 2719–2740 (2010).
doi: 10.1021/jm901137j
Tice, R. R., Austin, C. P., Kavlock, R. J. & Bucher, J. R. Improving the human hazard characterization of chemicals: A Tox21 update. Environ. Health Perspect. 121, 756–765 (2013).
doi: 10.1289/ehp.1205784
Kavlock, R. J., Austin, C. P. & Tice, R. R. Toxicity testing in the 21st century: Implications for human health risk assessment. Risk Anal. 29, 485–487 (2009).
doi: 10.1111/j.1539-6924.2008.01168.x
Inglese, J. et al. Quantitative high-throughput screening: A titration-based approach that efficiently identifies biological activities in large chemical libraries. Proc. Natl. Acad. Sci. 103, 11473–11478 (2006).
doi: 10.1073/pnas.0604348103
Wang, Y., Jadhav, A., Southal, N., Huang, R. & Nguyen, D.-T. A Grid Algorithm for High Throughput Fitting of Dose-Response Curve Data. Curr. Chem. Genomics 4, 57–66 (2010).
doi: 10.2174/1875397301004010057
Huang, R. et al. Chemical genomics profiling of environmental chemical modulation of human nuclear receptors. Environ. Health Perspect. 119, 1142–1148 (2011).
doi: 10.1289/ehp.1002952
Huang, R. A Quantitative High-Throughput Screening Data Analysis Pipeline for Activity Profiling. in 111–122. https://doi.org/10.1007/978-1-4939-6346-1_12 (2016)
Wang, Y. & Huang, R. Correction of Microplate Data from High-Throughput Screening. In High-Throughput Screening Assays in Toxicology 123–134. https://doi.org/10.1007/978-1-4939-6346-1_13 (2016)
Judson, R. et al. Analysis of the effects of cell stress and cytotoxicity on in vitro assay activity across a diverse chemical and assay space. Toxicol. Sci. 152, 323–339 (2016).
doi: 10.1093/toxsci/kfw092
Surre, J. et al. Strong increase in the autofluorescence of cells signals struggle for survival. Sci. Rep. 8, 1–14 (2018).
doi: 10.1038/s41598-018-30623-2
Fourches, D., Muratov, E. & Tropsha, A. Trust, but Verify II: A Practical Guide to Chemogenomics Data Curation. J. Chem. Inf. Model. 56, 1243–1252 (2016).
doi: 10.1021/acs.jcim.6b00129
RDKit: Open Source Cheminformatics Software. (2017).
Cao, D.-S. et al. PyDPI: freely available python package for chemoinformatics, bioinformatics, and chemogenomics studies. J. Chem. Inf. Model. 53, 3086–3096 (2013).
doi: 10.1021/ci400127q
Mansouri, K., Grulke, C. M., Judson, R. S. & Williams, A. J. OPERA models for predicting physicochemical properties and environmental fate endpoints. J. Cheminform. 10, 1–19 (2018).
doi: 10.1186/s13321-018-0263-1
Team R Core (R Foundation for Statistical Computing). R: A Language and Environment for Satistical Computing. (2015).
Kohonen, T. Self-organized formation of topologically correct feature maps. Biol. Cybern. 43, 59–69 (1982).
doi: 10.1007/BF00337288
Downs, G. M. & Barnard, J. M. Clustering Methods and Their Uses in Computational Chemistry. in Reviews in Computational Chemistry, Volume 18 (eds. Lipkowitz, K. B. & Boyd, D. B.) 18, 1–40 (John Wiley & Sons, Inc., 2002).
Ward, J. H. Hierarchical Grouping to Optimize an Objective Function. J. Am. Stat. Assoc. 58, 236 (1963).
doi: 10.1080/01621459.1963.10500845
Tropsha, A. & Golbraikh, A. Predictive QSAR Modeling Workflow, Model Applicability Domains, and Virtual Screening. Curr. Pharm. Des. 13, 3494–3504 (2007).
doi: 10.2174/138161207782794257
Golbraikh, A., Muratov, E., Fourches, D. & Tropsha, A. Data Set Modelability by QSAR. J. Chem. Inf. Model. 54, 1–4 (2014).
doi: 10.1021/ci400572x
Cherkasov, A. et al. QSAR modeling: Where have you been? Where are you going to? J. Med. Chem. 57, 4977–5010 (2014).
doi: 10.1021/jm4004285
Fisher, R. The Use of Multiple Measurements in Taxonomic Problems. Ann. Eugen. 7, 179–188 (1936).
doi: 10.1111/j.1469-1809.1936.tb02137.x
Breiman, L. Random Forest. Mach. Learn. 45, 5–32 (2001).
doi: 10.1023/A:1010933404324
Cortes, C. & Vapnik, V. Support-vector networks. Mach. Learn. 20, 273–297 (1995).
Breiman, L., Friedman, J. H., Olshen, R. A. & Stone, C. J. Classification and regression trees. (1984).
Ripley, B. D. Pattern Recognition and Neural Networks. Advances in Pattern Recognition Research (Cambridge University Press, 1996). https://doi.org/10.1017/CBO9780511812651
Kafadar, K., Koehler, J. R., Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S-Plus. Am. Stat. 53, 86 (1999).
doi: 10.2307/2685660
Richard, A. M. et al. ToxCast Chemical Landscape: Paving the Road to 21st Century Toxicology. Chem. Res. Toxicol. 29, 1225–1251 (2016).
doi: 10.1021/acs.chemrestox.6b00135
Lynch, C. et al. Identification of modulators that activate the constitutive androstane receptor from the Tox21 10K compound library. Toxicol. Sci. 167, 202–210 (2019).
doi: 10.1093/toxsci/kfy242
Welch, E. M. et al. PTC124 targets genetic disorders caused by nonsense mutations. Nature 447, 87–91 (2007).
doi: 10.1038/nature05756
Dionisio, K. L. et al. Data Descriptor: The Chemical and Products Database, a resource for exposure-relevant data on chemicals in consumer products. Sci. Data 5, 1–9 (2018).
doi: 10.1038/sdata.2018.125
Jadhav, A. et al. Quantitative analyses of aggregation, autofluorescence, and reactivity artifacts in a screen for inhibitors of a thiol protease. J. Med. Chem. 53, 37–51 (2010).
doi: 10.1021/jm901070c

Auteurs

Alexandre Borrel (A)

NIH/NIEHS/DIR/BCBB, RTP, NC, United States.

Ruili Huang (R)

NIH/NCATS, Bethesda, MD, United States.

Srilatha Sakamuru (S)

NIH/NCATS, Bethesda, MD, United States.

Menghang Xia (M)

NIH/NCATS, Bethesda, MD, United States.

Anton Simeonov (A)

NIH/NCATS, Bethesda, MD, United States.

Kamel Mansouri (K)

Integrated Laboratory Systems, RTP, NC, United States.

Keith A Houck (KA)

EPA/ORD/CCTE, RTP, NC, United States.

Richard S Judson (RS)

EPA/ORD/CCTE, RTP, NC, United States.

Nicole C Kleinstreuer (NC)

NIH/NIEHS/DIR/BCBB, RTP, NC, United States. nicole.kleinstreuer@nih.gov.
NIH/NIEHS/DNTP/NICEATM, RTP, NC, United States. nicole.kleinstreuer@nih.gov.

Articles similaires

Cephalometry Humans Anatomic Landmarks Software Internet
Alzheimer Disease Humans Regression Analysis Quantitative Structure-Activity Relationship Drug Design
Humans Male Female Intensive Care Units COVID-19
Humans Chondrocytes Osteoarthritis Matrix Metalloproteinase 13 Drug Discovery

Classifications MeSH