An integrated analysis of lymphocytic reaction, tumour molecular characteristics and patient survival in colorectal cancer.
Aged
Biomarkers, Tumor
/ genetics
Class I Phosphatidylinositol 3-Kinases
/ genetics
Colorectal Neoplasms
/ genetics
Cyclooxygenase 2
/ genetics
DNA Methylation
/ genetics
Female
Humans
Long Interspersed Nucleotide Elements
/ genetics
Lymphocyte Count
Lymphocytes
/ pathology
Lymphocytes, Tumor-Infiltrating
/ metabolism
Male
Microsatellite Instability
Middle Aged
Prognosis
Proportional Hazards Models
Proto-Oncogene Proteins B-raf
/ genetics
Proto-Oncogene Proteins p21(ras)
/ genetics
beta Catenin
/ genetics
Journal
British journal of cancer
ISSN: 1532-1827
Titre abrégé: Br J Cancer
Pays: England
ID NLM: 0370635
Informations de publication
Date de publication:
04 2020
04 2020
Historique:
received:
27
10
2019
accepted:
19
02
2020
revised:
12
02
2020
pubmed:
12
3
2020
medline:
23
12
2020
entrez:
12
3
2020
Statut:
ppublish
Résumé
Histological lymphocytic reaction is regarded as an independent prognostic marker in colorectal cancer. Considering the lack of adequate statistical power, adjustment for selection bias and comprehensive tumour molecular data in most previous studies, we investigated the strengths of the prognostic associations of lymphocytic reaction in colorectal carcinoma by utilising an integrative database of two prospective cohort studies. We examined Crohn's-like reaction, intratumoural periglandular reaction, peritumoural reaction and tumour-infiltrating lymphocytes in 1465 colorectal carcinoma cases. Using covariate data of 4420 colorectal cancer cases in total, inverse probability-weighted Cox proportional hazard regression model was used to control for selection bias (due to tissue availability) and potential confounders, including stage, MSI status, LINE-1 methylation, PTGS2 and CTNNB1 expression, KRAS, BRAF and PIK3CA mutations, and tumour neoantigen load. Higher levels of each lymphocytic reaction component were associated with better colorectal cancer-specific survival (P The four lymphocytic reaction components are prognostic biomarkers in colorectal carcinoma.
Sections du résumé
BACKGROUND
Histological lymphocytic reaction is regarded as an independent prognostic marker in colorectal cancer. Considering the lack of adequate statistical power, adjustment for selection bias and comprehensive tumour molecular data in most previous studies, we investigated the strengths of the prognostic associations of lymphocytic reaction in colorectal carcinoma by utilising an integrative database of two prospective cohort studies.
METHODS
We examined Crohn's-like reaction, intratumoural periglandular reaction, peritumoural reaction and tumour-infiltrating lymphocytes in 1465 colorectal carcinoma cases. Using covariate data of 4420 colorectal cancer cases in total, inverse probability-weighted Cox proportional hazard regression model was used to control for selection bias (due to tissue availability) and potential confounders, including stage, MSI status, LINE-1 methylation, PTGS2 and CTNNB1 expression, KRAS, BRAF and PIK3CA mutations, and tumour neoantigen load.
RESULTS
Higher levels of each lymphocytic reaction component were associated with better colorectal cancer-specific survival (P
CONCLUSIONS
The four lymphocytic reaction components are prognostic biomarkers in colorectal carcinoma.
Identifiants
pubmed: 32157241
doi: 10.1038/s41416-020-0780-3
pii: 10.1038/s41416-020-0780-3
pmc: PMC7188805
doi:
Substances chimiques
Biomarkers, Tumor
0
CTNNB1 protein, human
0
KRAS protein, human
0
beta Catenin
0
Cyclooxygenase 2
EC 1.14.99.1
PTGS2 protein, human
EC 1.14.99.1
Class I Phosphatidylinositol 3-Kinases
EC 2.7.1.137
PIK3CA protein, human
EC 2.7.1.137
BRAF protein, human
EC 2.7.11.1
Proto-Oncogene Proteins B-raf
EC 2.7.11.1
Proto-Oncogene Proteins p21(ras)
EC 3.6.5.2
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1367-1377Subventions
Organisme : NIDDK NIH HHS
ID : K24 DK098311
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA137178
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA118553
Pays : United States
Organisme : NCI NIH HHS
ID : P50 CA127003
Pays : United States
Organisme : MEXT | Japan Society for the Promotion of Science (JSPS)
ID : JP2017-775
Pays : International
Organisme : NCI NIH HHS
ID : R35 CA197735
Pays : United States
Organisme : NCI NIH HHS
ID : K07 CA188126
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA169141
Pays : United States
Organisme : Cancer Research UK (CRUK)
ID : UK C10674/A27140
Pays : International
Organisme : NCI NIH HHS
ID : U01 CA167552
Pays : United States
Organisme : NCI NIH HHS
ID : P01 CA055075
Pays : United States
Organisme : Dana-Farber/Harvard Cancer Center (DF/HCC)
ID : 2016-02
Pays : International
Organisme : Cancer Research UK
ID : C10674/A27140
Pays : United Kingdom
Organisme : NCI NIH HHS
ID : K07 CA190673
Pays : United States
Organisme : American Association for Cancer Research (American Association for Cancer Research, Inc.)
ID : SU2C-AACR-DT22-17
Pays : International
Organisme : NCI NIH HHS
ID : P01 CA087969
Pays : United States
Organisme : MEXT | Japan Society for the Promotion of Science (JSPS)
ID : JP201860083
Pays : International
Organisme : NCI NIH HHS
ID : R01 CA151993
Pays : United States
Organisme : NCI NIH HHS
ID : UM1 CA167552
Pays : United States
Organisme : NCI NIH HHS
ID : UM1 CA186107
Pays : United States
Références
Giraldo, N. A., Sanchez-Salas, R., Peske, J. D., Vano, Y., Becht, E., Petitprez, F. et al. The clinical role of the TME in solid cancer. Br. J. Cancer 120, 45–53 (2019).
pubmed: 30413828
doi: 10.1038/s41416-018-0327-z
Ogino, S., Nowak, J. A., Hamada, T., Phipps, A. I., Peters, U., Milner, D. A. Jr. et al. Integrative analysis of exogenous, endogenous, tumour and immune factors for precision medicine. Gut 67, 1168–1180 (2018).
pubmed: 29437869
doi: 10.1136/gutjnl-2017-315537
Gotwals, P., Cameron, S., Cipolletta, D., Cremasco, V., Crystal, A., Hewes, B. et al. Prospects for combining targeted and conventional cancer therapy with immunotherapy. Nat. Rev. Cancer 17, 286–301 (2017).
pubmed: 28338065
doi: 10.1038/nrc.2017.17
Barnes, T. A. & Amir, E. HYPE or HOPE: the prognostic value of infiltrating immune cells in cancer. Br. J. Cancer 117, 451–460 (2017).
pubmed: 28704840
pmcid: 5558691
doi: 10.1038/bjc.2017.220
Ogino, S., Nosho, K., Irahara, N., Meyerhardt, J. A., Baba, Y., Shima, K. et al. Lymphocytic reaction to colorectal cancer is associated with longer survival, independent of lymph node count, microsatellite instability, and CpG island methylator phenotype. Clin. Cancer Res. 15, 6412–6420 (2009).
pubmed: 19825961
pmcid: 2771425
doi: 10.1158/1078-0432.CCR-09-1438
Mlecnik, B., Bindea, G., Angell, H. K., Maby, P., Angelova, M., Tougeron, D. et al. Integrative analyses of colorectal cancer show immunoscore is a stronger predictor of patient survival than microsatellite instability. Immunity 44, 698–711 (2016).
pubmed: 26982367
doi: 10.1016/j.immuni.2016.02.025
Rozek, L. S., Schmit, S. L., Greenson, J. K., Tomsho, L. P., Rennert, H. S., Rennert, G. et al. Tumor-infiltrating lymphocytes, Crohn’s-like lymphoid reaction, and survival from colorectal cancer. J. Natl Cancer Inst. 108, djw027 (2016).
Vayrynen, J. P., Sajanti, S. A., Klintrup, K., Makela, J., Herzig, K. H., Karttunen, T. J. et al. Characteristics and significance of colorectal cancer associated lymphoid reaction. Int J. Cancer 134, 2126–2135 (2014).
pubmed: 24154855
doi: 10.1002/ijc.28533
Giannakis, M., Mu, X. J., Shukla, S. A., Qian, Z. R., Cohen, O., Nishihara, R. et al. Genomic correlates of immune-cell infiltrates in colorectal carcinoma. Cell Rep. 17, 1206 (2016).
pubmed: 27760322
pmcid: 5638785
doi: 10.1016/j.celrep.2016.10.009
Brown, S. D., Warren, R. L., Gibb, E. A., Martin, S. D., Spinelli, J. J., Nelson, B. H. et al. Neo-antigens predicted by tumor genome meta-analysis correlate with increased patient survival. Genome Res. 24, 743–750 (2014).
pubmed: 24782321
pmcid: 4009604
doi: 10.1101/gr.165985.113
Zelenay, S., van der Veen, A. G., Bottcher, J. P., Snelgrove, K. J., Rogers, N., Acton, S. E. et al. Cyclooxygenase-dependent tumor growth through evasion of immunity. Cell 162, 1257–1270 (2015).
pubmed: 26343581
pmcid: 4597191
doi: 10.1016/j.cell.2015.08.015
Grasso, C. S., Giannakis, M., Wells, D. K., Hamada, T., Mu, X. J., Quist, M. et al. Genetic mechanisms of immune evasion in colorectal cancer. Cancer Discov. 8, 730–749 (2018).
pubmed: 29510987
pmcid: 5984687
doi: 10.1158/2159-8290.CD-17-1327
Advani, S. M., Advani, P., DeSantis, S. M., Brown, D., VonVille, H. M., Lam, M. et al. Clinical, pathological, and molecular characteristics of CpG Island methylator phenotype in colorectal cancer: a systematic review and meta-analysis. Transl. Oncol. 11, 1188–1201 (2018).
pubmed: 30071442
pmcid: 6080640
doi: 10.1016/j.tranon.2018.07.008
Baba, Y., Huttenhower, C., Nosho, K., Tanaka, N., Shima, K., Hazra, A. et al. Epigenomic diversity of colorectal cancer indicated by LINE-1 methylation in a database of 869 tumors. Mol. Cancer 9, 125 (2010).
pubmed: 20507599
pmcid: 2892454
doi: 10.1186/1476-4598-9-125
Ogino, S., Nosho, K., Kirkner, G. J., Kawasaki, T., Meyerhardt, J. A., Loda, M. et al. CpG island methylator phenotype, microsatellite instability, BRAF mutation and clinical outcome in colon cancer. Gut 58, 90–96 (2009).
pubmed: 18832519
doi: 10.1136/gut.2008.155473
Ogino, S., Kirkner, G. J., Nosho, K., Irahara, N., Kure, S., Shima, K. et al. Cyclooxygenase-2 expression is an independent predictor of poor prognosis in colon cancer. Clin. Cancer Res. 14, 8221–8227 (2008).
pubmed: 19088039
pmcid: 2679582
doi: 10.1158/1078-0432.CCR-08-1841
Morikawa, T., Kuchiba, A., Yamauchi, M., Meyerhardt, J. A., Shima, K., Nosho, K. et al. Association of CTNNB1 (beta-catenin) alterations, body mass index, and physical activity with survival in patients with colorectal cancer. J. Am. Med. Assoc. 305, 1685–1694 (2011).
doi: 10.1001/jama.2011.513
Ogino, S., Nosho, K., Kirkner, G. J., Kawasaki, T., Chan, A. T., Schernhammer, E. S. et al. A cohort study of tumoral LINE-1 hypomethylation and prognosis in colon cancer. J. Natl Cancer Inst. 100, 1734–1738 (2008).
pubmed: 19033568
pmcid: 2639290
doi: 10.1093/jnci/djn359
Liu, L., Nevo, D., Nishihara, R., Cao, Y., Song, M., Twombly, T. S. et al. Utility of inverse probability weighting in molecular pathological epidemiology. Eur. J. Epidemiol. 33, 381–392 (2018).
pubmed: 29264788
doi: 10.1007/s10654-017-0346-8
Hamada, T., Cao, Y., Qian, Z. R., Masugi, Y., Nowak, J. A., Yang, J. et al. Aspirin use and colorectal cancer survival according to tumor CD274 (programmed cell death 1 ligand 1) expression status. J. Clin. Oncol. 35, 1836–1844 (2017).
pubmed: 28406723
pmcid: 5455595
doi: 10.1200/JCO.2016.70.7547
Seaman, S. R. & White, I. R. Review of inverse probability weighting for dealing with missing data. Stat. Methods Med. Res. 22, 278–295 (2013).
pubmed: 21220355
doi: 10.1177/0962280210395740
Sheikh, K. Investigation of selection bias using inverse probability weighting. Eur. J. Epidemiol. 22, 349–350 (2007).
pubmed: 17484025
doi: 10.1007/s10654-007-9131-4
Nishihara, R., Wu, K., Lochhead, P., Morikawa, T., Liao, X., Qian, Z. R. et al. Long-term colorectal-cancer incidence and mortality after lower endoscopy. N. Engl. J. Med. 369, 1095–1105 (2013).
pubmed: 24047059
doi: 10.1056/NEJMoa1301969
Yamauchi, M., Morikawa, T., Kuchiba, A., Imamura, Y., Qian, Z. R., Nishihara, R. et al. Assessment of colorectal cancer molecular features along bowel subsites challenges the conception of distinct dichotomy of proximal versus distal colorectum. Gut 61, 847–854 (2012).
pubmed: 22427238
doi: 10.1136/gutjnl-2011-300865
Kosumi, K., Hamada, T., Koh, H., Borowsky, J., Bullman, S., Twombly, T. S. et al. The amount of bifidobacterium genus in colorectal carcinoma tissue in relation to tumor characteristics and clinical outcome. Am. J. Pathol. 188, 2839–2852 (2018).
pubmed: 30243655
pmcid: 6284552
doi: 10.1016/j.ajpath.2018.08.015
Liao, X., Lochhead, P., Nishihara, R., Morikawa, T., Kuchiba, A., Yamauchi, M. et al. Aspirin use, tumor PIK3CA mutation, and colorectal-cancer survival. N. Engl. J. Med. 367, 1596–1606 (2012).
pubmed: 23094721
pmcid: 3532946
doi: 10.1056/NEJMoa1207756
Nosho, K., Irahara, N., Shima, K., Kure, S., Kirkner, G. J., Schernhammer, E. S. et al. Comprehensive biostatistical analysis of CpG island methylator phenotype in colorectal cancer using a large population-based sample. PLoS One 3, e3698 (2008).
pubmed: 19002263
pmcid: 2579485
doi: 10.1371/journal.pone.0003698
Irahara, N., Nosho, K., Baba, Y., Shima, K., Lindeman, N. I., Hazra, A. et al. Precision of pyrosequencing assay to measure LINE-1 methylation in colon cancer, normal colonic mucosa, and peripheral blood cells. J. Mol. Diagn. 12, 177–183 (2010).
pubmed: 20093385
pmcid: 2871724
doi: 10.2353/jmoldx.2010.090106
Giannakis, M., Mu, X. J., Shukla, S. A., Qian, Z. R., Cohen, O., Nishihara, R. et al. Genomic correlates of immune-cell infiltrates in colorectal carcinoma. Cell Rep. 15, 857–865 (2016).
pubmed: 27149842
pmcid: 4850357
doi: 10.1016/j.celrep.2016.03.075
Nielsen, M. & Andreatta, M. NetMHCpan-3.0; improved prediction of binding to MHC class I molecules integrating information from multiple receptor and peptide length datasets. Genome Med. 8, 33 (2016).
pubmed: 27029192
pmcid: 4812631
doi: 10.1186/s13073-016-0288-x
Chan, A. T., Ogino, S. & Fuchs, C. S. Aspirin and the risk of colorectal cancer in relation to the expression of COX-2. N. Engl. J. Med. 356, 2131–2142 (2007).
pubmed: 17522398
doi: 10.1056/NEJMoa067208
Masugi, Y., Nishihara, R., Yang, J., Mima, K., da Silva, A., Shi, Y. et al. Tumour CD274 (PD-L1) expression and T cells in colorectal cancer. Gut 66, 1463–1473 (2017).
pubmed: 27196573
doi: 10.1136/gutjnl-2016-311421
Benjamin, D. J., Berger, J. O., Johannesson, M., Nosek, B. A., Wagenmakers, E. J., Berk, R. et al. Redefine statistical significance. Nat. Hum. Behav. 2, 6–10 (2018).
pubmed: 30980045
doi: 10.1038/s41562-017-0189-z
Galon, J., Costes, A., Sanchez-Cabo, F., Kirilovsky, A., Mlecnik, B., Lagorce-Pages, C. et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313, 1960–1964 (2006).
pubmed: 17008531
doi: 10.1126/science.1129139
Galon, J., Mlecnik, B., Bindea, G., Angell, H. K., Berger, A., Lagorce, C. et al. Towards the introduction of the ‘Immunoscore’ in the classification of malignant tumours. J. Pathol. 232, 199–209 (2014).
pubmed: 24122236
doi: 10.1002/path.4287
Pages, F., Mlecnik, B., Marliot, F., Bindea, G., Ou, F. S., Bifulco, C. et al. International validation of the consensus Immunoscore for the classification of colon cancer: a prognostic and accuracy study. Lancet 391, 2128–2139 (2018).
pubmed: 29754777
doi: 10.1016/S0140-6736(18)30789-X
Pages, F., Kirilovsky, A., Mlecnik, B., Asslaber, M., Tosolini, M., Bindea, G. et al. In situ cytotoxic and memory T cells predict outcome in patients with early-stage colorectal cancer. J. Clin. Oncol. 27, 5944–5951 (2009).
pubmed: 19858404
doi: 10.1200/JCO.2008.19.6147
Ribas, A. & Wolchok, J. D. Cancer immunotherapy using checkpoint blockade. Science 359, 1350–1355 (2018).
pubmed: 29567705
pmcid: 7391259
doi: 10.1126/science.aar4060
Ciardiello, D., Vitiello, P. P., Cardone, C., Martini, G., Troiani, T., Martinelli, E. et al. Immunotherapy of colorectal cancer: challenges for therapeutic efficacy. Cancer Treat. Rev. 76, 22–32 (2019).
pubmed: 31079031
doi: 10.1016/j.ctrv.2019.04.003
Kather, J. N. & Halama, N. Harnessing the innate immune system and local immunological microenvironment to treat colorectal cancer. Br. J. Cancer 120, 871–882 (2019).
pubmed: 30936499
pmcid: 6734657
doi: 10.1038/s41416-019-0441-6
Kudryavtseva, A. V., Lipatova, A. V., Zaretsky, A. R., Moskalev, A. A., Fedorova, M. S., Rasskazova, A. S. et al. Important molecular genetic markers of colorectal cancer. Oncotarget 7, 53959–53983 (2016).
pubmed: 27276710
pmcid: 5288236
doi: 10.18632/oncotarget.9796
Punt, C. J., Koopman, M. & Vermeulen, L. From tumour heterogeneity to advances in precision treatment of colorectal cancer. Nat. Rev. Clin. Oncol. 14, 235–246 (2017).
pubmed: 27922044
doi: 10.1038/nrclinonc.2016.171
Becht, E., de Reynies, A., Giraldo, N. A., Pilati, C., Buttard, B., Lacroix, L. et al. Immune and stromal classification of colorectal cancer is associated with molecular subtypes and relevant for precision immunotherapy. Clin. Cancer Res. 22, 4057–4066 (2016).
pubmed: 26994146
doi: 10.1158/1078-0432.CCR-15-2879
Taube, J. M., Galon, J., Sholl, L. M., Rodig, S. J., Cottrell, T. R., Giraldo, N. A. et al. Implications of the tumor immune microenvironment for staging and therapeutics. Mod. Pathol. 31, 214–234 (2018).
pubmed: 29192647
doi: 10.1038/modpathol.2017.156
Wirth, T. C. & Kuhnel, F. Neoantigen targeting-dawn of a new era in cancer immunotherapy? Front. Immunol. 8, 1848 (2017).
pubmed: 29312332
pmcid: 5742119
doi: 10.3389/fimmu.2017.01848
Nosho, K., Baba, Y., Tanaka, N., Shima, K., Hayashi, M., Meyerhardt, J. A. et al. Tumour-infiltrating T-cell subsets, molecular changes in colorectal cancer, and prognosis: cohort study and literature review. J. Pathol. 222, 350–366 (2010).
pubmed: 20927778
pmcid: 3033700
doi: 10.1002/path.2774
Marisa, L., Svrcek, M., Collura, A., Becht, E., Cervera, P., Wanherdrick, K. et al. The balance between cytotoxic T-cell lymphocytes and immune checkpoint expression in the prognosis of colon tumors. J. Natl Cancer Inst. 110, 68–77 (2018).
Hu, G. & Wang, S. Tumor-infiltrating CD45RO(+) memory T lymphocytes predict favorable clinical outcome in solid tumors. Sci. Rep. 7, 10376 (2017).
pubmed: 28871164
pmcid: 5583330
doi: 10.1038/s41598-017-11122-2
Park, J. H., van Wyk, H., Roxburgh, C. S. D., Horgan, P. G., Edwards, J. & McMillan, D. C. Tumour invasiveness, the local and systemic environment and the basis of staging systems in colorectal cancer. Br. J. Cancer 116, 1444–1450 (2017).
pubmed: 28427085
pmcid: 5520088
doi: 10.1038/bjc.2017.108
Dirschmid, K., Sterlacci, W., Woll, E., Tschann, P., Rhomberg, M. & Offner, F. Incidence of extramural venous invasion in colorectal carcinoma as determined at the invasive tumor front and its prognostic impact. Hum. Pathol. 86, 102–107 (2019).
pubmed: 30571994
doi: 10.1016/j.humpath.2018.11.031
Lang-Schwarz, C., Melcher, B., Haumaier, F., Lang-Schwarz, K., Rupprecht, T., Vieth, M. et al. Budding and tumor-infiltrating lymphocytes - combination of both parameters predicts survival in colorectal cancer and leads to new prognostic subgroups. Hum. Pathol. 79, 160–167 (2018).
pubmed: 29787819
doi: 10.1016/j.humpath.2018.05.010
Hamada, T., Nowak, J. A., Milner, D. A. Jr., Song, M. & Ogino, S. Integration of microbiology, molecular pathology, and epidemiology: a new paradigm to explore the pathogenesis of microbiome-driven neoplasms. J. Pathol. 247, 615–628 (2019).
pubmed: 30632609
pmcid: 6509405
doi: 10.1002/path.5236