Safety and Effectiveness of Neuro-thrombectomy on Single compared to Biplane Angiography Systems.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
11 03 2020
11 03 2020
Historique:
received:
26
09
2019
accepted:
14
02
2020
entrez:
13
3
2020
pubmed:
13
3
2020
medline:
21
11
2020
Statut:
epublish
Résumé
An increasing number of centers not necessarily equipped with biplane (BP) angiosuites are performing mechanical thrombectomy (MT) in acute ischemic stroke patients. We assessed whether MT performed on single-plane (SP) is equivalent in terms of safety, effectiveness, radiation and contrast agent exposure. Consecutive patients treated by MT in four high volume centers between January 2014 and May 2017 were included. Demographic and MT characteristics were assessed and compared between SP and BP. Of 906 patients treated by MT, 576 (64%) were handled on a BP system. After multivariate analysis, contrast load and fluoroscopy duration were significantly lower in the BP group [100vs200mL, relative effect 0.85 (CI: 0.79-0.92), p = 0.0002; 22 vs 27 min, relative effect 0.84 (CI: 0.76-0.93), p = 0.0008, respectively]. There was no difference in recanalization (modified Thrombolysis-In-Cerebral-Infarction 2b-3), good clinical outcome (modified Rankin Scale 0-2), complications rates, procedure duration or radiation exposure. A three-vessel diagnostic angiogram performed prior to MT led to a significant increase in procedure duration (15% increase, p = 0.05), radiation exposure (33% increase, p < 0.0001) and contrast load (125% increase, p < 0.0001). Mechanical neuro-thrombectomy seems equally safe and effective on a single or biplane angiography system despite increased contrast load and fluoroscopy duration on the former.
Identifiants
pubmed: 32161286
doi: 10.1038/s41598-020-60851-4
pii: 10.1038/s41598-020-60851-4
pmc: PMC7066129
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
4470Investigateurs
Eike Piechowiak
(E)
Pasquale Mordasini
(P)
Felix Zibold
(F)
Celina Ducroux
(C)
Fabrice Bonneville
(F)
Jean Darcourt
(J)
Ivan Vukasinovic
(I)
Anne Christine Januel
(AC)
Sylvie Monfraix
(S)
Caterina Michelozzi
(C)
Philippe Tall
(P)
Mikael Mazighi
(M)
Jean-Philippe Desilles
(JP)
Gabriele Ciccio
(G)
Stanislas Smajda
(S)
Hocine Redjem
(H)
Benjamin Maier
(B)
Blake W Martin
(BW)
Elisa Guenego
(E)
Fanny Carbillet
(F)
Références
Berkhemer, O. A. et al. A randomized trial of intraarterial treatment for acute ischemic stroke. N. Engl. J. Med. 372, 11–20, https://doi.org/10.1056/NEJMoa1411587 (2015).
doi: 10.1056/NEJMoa1411587
pubmed: 25517348
Campbell, B. C. et al. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N. Engl. J. Med. 372, 1009–1018, https://doi.org/10.1056/NEJMoa1414792 (2015).
doi: 10.1056/NEJMoa1414792
pubmed: 25671797
Jovin, T. G. et al. Thrombectomy within 8 hours after symptom onset in ischemic stroke. N. Engl. J. Med. 372, 2296–2306, https://doi.org/10.1056/NEJMoa1503780 (2015).
doi: 10.1056/NEJMoa1503780
pubmed: 25882510
Saver, J. L. et al. Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. N. Engl. J. Med. 372, 2285–2295, https://doi.org/10.1056/NEJMoa1415061 (2015).
doi: 10.1056/NEJMoa1415061
pubmed: 25882376
Bracard, S. et al. Mechanical thrombectomy after intravenous alteplase versus alteplase alone after stroke (THRACE): a randomised controlled trial. Lancet. Neurol. 15, 1138–1147, https://doi.org/10.1016/S1474-4422(16)30177-6 (2016).
doi: 10.1016/S1474-4422(16)30177-6
pubmed: 27567239
Goyal, M. et al. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet 387, 1723–1731, https://doi.org/10.1016/S0140-6736(16)00163-X (2016).
doi: 10.1016/S0140-6736(16)00163-X
pubmed: 26898852
pmcid: 26898852
Albers, G. W. et al. Thrombectomy for Stroke at 6 to 16 Hours with Selection by Perfusion Imaging. N. Engl. J. Med. 378, 708–718, https://doi.org/10.1056/NEJMoa1713973 (2018).
doi: 10.1056/NEJMoa1713973
pubmed: 29364767
pmcid: 6590673
Nogueira, R. G. et al. Thrombectomy 6 to 24 Hours after Stroke with a Mismatch between Deficit and Infarct. N. Engl. J. Med. 378, 11–21, https://doi.org/10.1056/NEJMoa1706442 (2018).
doi: 10.1056/NEJMoa1706442
pubmed: 29129157
Hopkins, L. N. & Holmes, D. R. Jr. Public Health Urgency Created by the Success of Mechanical Thrombectomy Studies in Stroke. Circulation 135, 1188–1190, https://doi.org/10.1161/CIRCULATIONAHA.116.025652 (2017).
doi: 10.1161/CIRCULATIONAHA.116.025652
pubmed: 28348088
Society of NeuroInterventional, S., American Association of Neurological, S., Congress of Neurological, S., Society of, V. & Interventional, N. Letter by the Society of NeuroInterventional Surgery, the Cerebrovascular Section of the American Association of Neurological Surgeons and the Congress of Neurological Surgeons, and the Society of Vascular and Interventional Neurology Regarding Article, “Public Health Urgency Created by the Success of Mechanical Thrombectomy Studies in Stroke”. Circulation 136, 779–780, https://doi.org/10.1161/CIRCULATIONAHA.117.028820 (2017).
doi: 10.1161/CIRCULATIONAHA.117.028820
Lavine, S. D. et al. Training Guidelines for Endovascular Ischemic Stroke Intervention: An International Multi-Society Consensus Document. AJNR Am. J. Neuroradiol. 37, E31–34, https://doi.org/10.3174/ajnr.A4766 (2016).
doi: 10.3174/ajnr.A4766
pubmed: 26892982
Hornung, M. et al. TCT-211 Technical Success of Acute Stroke Interventions Performed by Cardiologists – Single Center Experience. J. Am. Coll. Cardiology 72, B89, https://doi.org/10.1016/j.jacc.2018.08.1332 (2018).
doi: 10.1016/j.jacc.2018.08.1332
Bellemare, C. A. & Poder, T. G. Effectiveness of biplane angiography compared to monoplane angiography for vascular neuro-interventions: a systematic review of the literature. Clin. radiology 72, 612.e611–612.e615, https://doi.org/10.1016/j.crad.2017.02.020 (2017).
doi: 10.1016/j.crad.2017.02.020
Brenner, D. J. & Hall, E. J. Computed tomography–an increasing source of radiation exposure. N. Engl. J. Med. 357, 2277–2284, https://doi.org/10.1056/NEJMra072149 (2007).
doi: 10.1056/NEJMra072149
pubmed: 18046031
The 2007 Recommendations of the International Commission on Radiological Protection. ICRP publication 103. Ann. ICRP 37, 1–332, https://doi.org/10.1016/j.icrp.2007.10.003 (2007).
doi: 10.1016/j.icrp.2007.10.003
Fetterly, K. et al. Head and Neck Radiation Dose and Radiation Safety for Interventional Physicians. JACC Cardiovasc. Interv. 10, 520–528, https://doi.org/10.1016/j.jcin.2016.11.026 (2017).
doi: 10.1016/j.jcin.2016.11.026
pubmed: 28279321
Salaun, E. et al. High Radiation Exposure of the Imaging Specialist During Structural Heart Interventions With Echocardiographic Guidance. JACC Cardiovasc. Interv. 10, 626–627, https://doi.org/10.1016/j.jcin.2017.01.016 (2017).
doi: 10.1016/j.jcin.2017.01.016
pubmed: 28335903
Sadick, V. et al. Impact of biplane versus single-plane imaging on radiation dose, contrast load and procedural time in coronary angioplasty. Br. J. Radiol. 83, 379–394, https://doi.org/10.1259/bjr/21696839 (2010).
doi: 10.1259/bjr/21696839
pubmed: 20019175
pmcid: 3473578
Freeman, R. V. et al. Nephropathy requiring dialysis after percutaneous coronary intervention and the critical role of an adjusted contrast dose. Am. J. cardiology 90, 1068–1073 (2002).
doi: 10.1016/S0002-9149(02)02771-6
Kane, G. C. et al. Ultra-low contrast volumes reduce rates of contrast-induced nephropathy in patients with chronic kidney disease undergoing coronary angiography. J. Am. Coll. Cardiology 51, 89–90, https://doi.org/10.1016/j.jacc.2007.09.019 (2008).
doi: 10.1016/j.jacc.2007.09.019
Marycz, D. & Ziada, K. M. Nonrenal Complications of Contrast Media. Interv. Cardiol. Clin. 3, 341–348, https://doi.org/10.1016/j.iccl.2014.03.004 (2014).
doi: 10.1016/j.iccl.2014.03.004
pubmed: 28582218
Weisbord, S. D. et al. Outcomes after Angiography with Sodium Bicarbonate and Acetylcysteine. The New England journal of medicine, https://doi.org/10.1056/NEJMoa1710933 (2017).
doi: 10.1056/NEJMoa1710933
Bashore, T. M. et al. American College of Cardiology/Society for Cardiac Angiography and Interventions Clinical Expert Consensus Document on cardiac catheterization laboratory standards. A report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J. Am. Coll. Cardiology 37, 2170–2214 (2001).
doi: 10.1016/S0735-1097(01)01346-8
Pantos, I., Patatoukas, G., Katritsis, D. & Efstathopoulos, E. Patient Radiation Doses in Interventional Cardiology Procedures. Curr. Cardiology Rev. 5, 1–11, https://doi.org/10.2174/157340309787048059 (2009).
doi: 10.2174/157340309787048059
Friedrich, B. et al. Endovascular Stroke Treatment on Single-Plane vs. Bi-Plane Angiography Suites: Technical Considerations and Evaluation of Treatment Success. Clin. Neuroradiol, https://doi.org/10.1007/s00062-017-0655-z (2018).
doi: 10.1007/s00062-017-0655-z
Powers, W. J. et al. Guidelines for the Early Management of Patients With Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke, https://doi.org/10.1161/STR.0000000000000158 (2018).
Guenego, A. et al. Proposed achievable levels of dose and impact of dose-reduction systems for thrombectomy in acute ischemic stroke: an international, multicentric, retrospective study in 1096 patients. Eur. Radiol, https://doi.org/10.1007/s00330-019-06062-6 (2019).
doi: 10.1007/s00330-019-06062-6
Papanagiotou, P. et al. Carotid Stenting With Antithrombotic Agents and Intracranial Thrombectomy Leads to the Highest Recanalization Rate in Patients With Acute Stroke With Tandem Lesions. JACC Cardiovasc. Interv. 11, 1290–1299, https://doi.org/10.1016/j.jcin.2018.05.036 (2018).
doi: 10.1016/j.jcin.2018.05.036
pubmed: 29976365
Lapergue, B. et al. Effect of Endovascular Contact Aspiration vs Stent Retriever on Revascularization in Patients With Acute Ischemic Stroke and Large Vessel Occlusion: The ASTER Randomized Clinical Trial. JAMA 318, 443–452, https://doi.org/10.1001/jama.2017.9644 (2017).
doi: 10.1001/jama.2017.9644
pubmed: 28763550
pmcid: 5817613
Schonenberger, S. et al. Effect of Conscious Sedation vs General Anesthesia on Early Neurological Improvement Among Patients With Ischemic Stroke Undergoing Endovascular Thrombectomy: A Randomized Clinical Trial. JAMA 316, 1986–1996, https://doi.org/10.1001/jama.2016.16623 (2016).
doi: 10.1001/jama.2016.16623
pubmed: 27785516
Johnson, C. S. J., Kyrion, J. & Taylor, W. J. Comparing the performance of mono- and biplane fluoroscopy systems in diagnostic and interventional neuroangiography using the dose-area product. Neuroradiology 43, 728–734 (2001).
doi: 10.1007/s002340000512
Lin, A. et al. Optimisation of coronary angiography exposures requires a multifactorial approach and careful procedural definition. Br. J. Radiol. 86, 20120028, https://doi.org/10.1259/bjr.20120028 (2013).
doi: 10.1259/bjr.20120028
pubmed: 23719084
pmcid: 3922173
Saber, H. et al. Real-World Treatment Trends in Endovascular Stroke Therapy. Stroke 50, 683–689, https://doi.org/10.1161/STROKEAHA.118.023967 (2019).
doi: 10.1161/STROKEAHA.118.023967
pubmed: 30726185
pmcid: 6407696
Higashida, R. T. et al. Trial design and reporting standards for intra-arterial cerebral thrombolysis for acute ischemic stroke. Stroke 34, e109–137, https://doi.org/10.1161/01.STR.0000082721.62796.09 (2003).
doi: 10.1161/01.STR.0000082721.62796.09
pubmed: 12869717
Guenego, A. et al. Hypoperfusion ratio predicts infarct growth during transfer for thrombectomy. Ann. Neurol. 84, 616–620, https://doi.org/10.1002/ana.25320 (2018).
doi: 10.1002/ana.25320
pubmed: 30168180
Friedrich, B. et al. Endovascular Stroke Treatment on Single-Plane vs. Bi-Plane Angiography Suites: Technical Considerations and Evaluation of Treatment Success. Clin. Neuroradiol. 29, 303–309, https://doi.org/10.1007/s00062-017-0655-z (2019).
doi: 10.1007/s00062-017-0655-z
pubmed: 29297102
von Elm, E. et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Lancet 370, 1453–1457, https://doi.org/10.1016/S0140-6736(07)61602-X (2007).
doi: 10.1016/S0140-6736(07)61602-X
Powers, W. J. et al. 2015 American Heart Association/American Stroke Association Focused Update of the 2013 Guidelines for the Early Management of Patients With Acute Ischemic Stroke Regarding Endovascular Treatment. Stroke 46, 3020–3035, https://doi.org/10.1161/STR.0000000000000074 (2015).
doi: 10.1161/STR.0000000000000074
pubmed: 26123479
Fiehler, J. et al. European Recommendations on Organisation of Interventional Care in Acute Stroke (EROICAS). Int. J. Stroke 11, 701–716, https://doi.org/10.1177/1747493016647735 (2016).
doi: 10.1177/1747493016647735
pubmed: 27462090
van Swieten, J. C., Koudstaal, P. J., Visser, M. C., Schouten, H. J. & van Gijn, J. Interobserver agreement for the assessment of handicap in stroke patients. Stroke 19, 604–607 (1988).
doi: 10.1161/01.STR.19.5.604
Chapple, C. L., Broadhead, D. A. & Faulkner, K. A phantom based method for deriving typical patient doses from measurements of dose-area product on populations of patients. Br. J. Radiol. 68, 1083–1086, https://doi.org/10.1259/0007-1285-68-814-1083 (1995).
doi: 10.1259/0007-1285-68-814-1083
pubmed: 7496708
Miller, D. L. et al. Radiation doses in interventional radiology procedures: the RAD-IR study: part I: overall measures of dose. J. Vasc. Interv. Radiol. 14, 711–727 (2003).
doi: 10.1097/01.RVI.0000079980.80153.4B
Miyake, H. et al. Medical electrical equipment - part 2-43: particular requirements for the basic safety and essential performance of X-ray equipment for interventional procedures. Nihon Hoshasen Gijutsu Gakkai Zasshi 67, 298–301 (2011).
doi: 10.6009/jjrt.67.298