PLCG2 protective variant p.P522R modulates tau pathology and disease progression in patients with mild cognitive impairment.
Alzheimer’s disease
Cognitive decline
Mild cognitive impairment
PLCG2
Phospholipase C gamma 2
Journal
Acta neuropathologica
ISSN: 1432-0533
Titre abrégé: Acta Neuropathol
Pays: Germany
ID NLM: 0412041
Informations de publication
Date de publication:
06 2020
06 2020
Historique:
received:
09
11
2019
accepted:
20
02
2020
revised:
19
02
2020
pubmed:
14
3
2020
medline:
9
6
2021
entrez:
14
3
2020
Statut:
ppublish
Résumé
A rare coding variant (rs72824905, p.P522R) conferring protection against Alzheimer's disease (AD) was identified in the gene encoding the enzyme phospholipase-C-γ2 (PLCG2) that is highly expressed in microglia. To explore the protective nature of this variant, we employed latent process linear mixed models to examine the association of p.P522R with longitudinal cognitive decline in 3595 MCI patients, and in 10,097 individuals from population-based studies. Furthermore, association with CSF levels of pTau
Identifiants
pubmed: 32166339
doi: 10.1007/s00401-020-02138-6
pii: 10.1007/s00401-020-02138-6
pmc: PMC7244617
doi:
Substances chimiques
Amyloid beta-Peptides
0
Biomarkers
0
tau Proteins
0
PLCG2 protein, human
EC 3.1.4.3
Phospholipase C gamma
EC 3.1.4.3
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
1025-1044Subventions
Organisme : NIA NIH HHS
ID : U01 AG024904
Pays : United States
Organisme : HSRD VA
ID : CDA 10-014
Pays : United States
Investigateurs
Luca Kleineidam
(L)
Ilker Karaca
(I)
Michael T Heneka
(MT)
Wolfgang Maier
(W)
Anja Schneider
(A)
Michael Wagner
(M)
Vincent Chouraki
(V)
Phillipe Amouyel
(P)
Jean-Charles Lambert
(JC)
Tomasz Próchnicki
(T)
Eicke Latz
(E)
Sven J van der Lee
(SJ)
Iris E Jansen
(IE)
Marc Hulsman
(M)
Philip Scheltens
(P)
Wiesje M van der Flier
(WM)
Henne Holstege
(H)
Laura Madrid-Márquez
(L)
Antonio González-Pérez
(A)
Mª Eugenia Sáez
(ME)
Holger Wagner-Thelen
(H)
Pamela V Martino Adami
(PV)
Frank Jessen
(F)
Alfredo Ramirez
(A)
Leonie Weinhold
(L)
Matthias Schmid
(M)
Steffen Wolfsgruber
(S)
Frederic Brosseron
(F)
Anne Boland
(A)
Jean-Francois Deleuze
(JF)
Piotr Lewczuk
(P)
Johannes Kornhuber
(J)
Julius Popp
(J)
Oliver Peters
(O)
Claudine Berr
(C)
Reinhard Heun
(R)
Lutz Frölich
(L)
Christophe Tzourio
(C)
Jean-François Dartigues
(JF)
Michael Hüll
(M)
Ana Espinosa
(A)
Isabel Hernández
(I)
Itziar de Rojas
(I)
Adelina Orellana
(A)
Sergi Valero
(S)
Agustin Ruiz
(A)
Lluis Tarraga
(L)
Merce Boada
(M)
Najada Stringa
(N)
Natasja M van Schoor
(NM)
Martijn Huisman
(M)
Eckart Rüther
(E)
Jens Wiltfang
(J)
Martin Scherer
(M)
Steffi Riedel-Heller
(S)
Références
Abdelnour C, van Steenoven I, Londos E et al (2016) Alzheimer’s disease cerebrospinal fluid biomarkers predict cognitive decline in lewy body dementia. Mov Disord 31(8):1203–1208
pubmed: 27296778
doi: 10.1002/mds.26668
Abner EL, Kryscio RJ, Schmitt FA et al (2017) Outcomes after diagnosis of mild cognitive impairment in a large autopsy series. Ann Neurol 81(4):549–559
pubmed: 28224671
pmcid: 5401633
doi: 10.1002/ana.24903
Arboleda-Velasquez JF, Lopera F, O’Hare M et al (2019) Resistance to autosomal dominant Alzheimer’s disease in an APOE3 Christchurch homozygote: a case report. Nat Med 25(11):1680–1683
pubmed: 31686034
pmcid: 6898984
doi: 10.1038/s41591-019-0611-3
Asai H, Ikezu S, Tsunoda S et al (2015) Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nat Neurosci 18(11):1584–1593
pubmed: 26436904
pmcid: 4694577
doi: 10.1038/nn.4132
Bhaskar K, Konerth M, Kokiko-Cochran ON et al (2010) Regulation of tau pathology by the microglial fractalkine receptor. Neuron 68(1):19–31
pubmed: 20920788
pmcid: 2950825
doi: 10.1016/j.neuron.2010.08.023
Boyle PA, Wilson RS, Yu L et al (2013) Much of late life cognitive decline is not due to common neurodegenerative pathologies. Ann Neurol 74(3):478–489
pubmed: 23798485
doi: 10.1002/ana.23964
Braak H, Thal DR, Ghebremedhin E et al (2011) Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol 70(11):960–969
doi: 10.1097/NEN.0b013e318232a379
pubmed: 22002422
Chae JJ, Park YH, Park C et al (2015) Brief report: connecting two pathways through Ca2
pubmed: 25418813
pmcid: 4369162
doi: 10.1002/art.38961
Cohen G, Makranz C, Spira M et al (2006) Non-PKC DAG/Phorbol-Ester receptor (s) inhibit complement receptor-3 and nPKC inhibit scavenger receptor-AI/II-mediated myelin phagocytosis but cPKC, PI3k, and PLCγ activate myelin phagocytosis by both. Glia 53(5):538–550
pubmed: 16374778
doi: 10.1002/glia.20304
Conway OJ, Carrasquillo MM, Wang X et al (2018) ABI3 and PLCG2 missense variants as risk factors for neurodegenerative diseases in Caucasians and African Americans. Mol Neurodegener 13(1):53
pubmed: 30326945
pmcid: 6190665
doi: 10.1186/s13024-018-0289-x
Curran PJ, Hussong AM (2009) Integrative data analysis: the simultaneous analysis of multiple data sets. Psychol Methods 14(2):81
pubmed: 19485623
pmcid: 19485623
doi: 10.1037/a0015914
Dagher NN, Najafi AR, Kayala KMN et al (2015) Colony-stimulating factor 1 receptor inhibition prevents microglial plaque association and improves cognition in 3xTg-AD mice. J Neuroinflamm 12(1):139
doi: 10.1186/s12974-015-0366-9
Dalmasso MC, Brusco LI, Olivar N et al (2019) Transethnic meta-analysis of rare coding variants in PLCG2, ABI3, and TREM2 supports their general contribution to Alzheimer’s disease. Transl Psychiatry 9(1):55
pubmed: 30705288
pmcid: 6355764
doi: 10.1038/s41398-019-0394-9
Deczkowska A, Keren-Shaul H, Weiner A et al (2018) Disease-associated microglia: a universal immune sensor of neurodegeneration. Cell 173(5):1073–1081
pubmed: 29775591
doi: 10.1016/j.cell.2018.05.003
Enders CK (2010) Applied missing data analysis. Guilford Press, New York
Ferrari R, Wang Y, Vandrovcova J et al (2017) Genetic architecture of sporadic frontotemporal dementia and overlap with Alzheimer’s and Parkinson’s diseases. J Neurol Neurosurg Psychiatry 88(2):152–164
pubmed: 27899424
doi: 10.1136/jnnp-2016-314411
Finan C, Gaulton A, Kruger FA et al (2017) The druggable genome and support for target identification and validation in drug development. Sci Transl Med 9(383):eaag1166
pubmed: 28356508
pmcid: 6321762
doi: 10.1126/scitranslmed.aag1166
Fjell AM, McEvoy L, Holland D et al (2014) What is normal in normal aging? Effects of aging, amyloid and Alzheimer’s disease on the cerebral cortex and the hippocampus. Prog Neurobiol 117:20–40
pubmed: 24548606
pmcid: 4343307
doi: 10.1016/j.pneurobio.2014.02.004
Friedman BA, Srinivasan K, Ayalon G et al (2018) Diverse brain myeloid expression profiles reveal distinct microglial activation states and aspects of Alzheimer’s disease not evident in mouse models. Cell Rep 22(3):832–847
pubmed: 29346778
doi: 10.1016/j.celrep.2017.12.066
Guerreiro RJ, Lohmann E, Brás JM et al (2013) Using exome sequencing to reveal mutations in TREM2 presenting as a frontotemporal dementia–like syndrome without bone involvement. JAMA Neurol 70(1):78–84
pubmed: 23318515
pmcid: 4001789
doi: 10.1001/jamaneurol.2013.579
Hammond TR, Marsh SE, Stevens B (2019) Immune signaling in neurodegeneration. Immunity 50(4):955–974
pubmed: 30995509
pmcid: 6822103
doi: 10.1016/j.immuni.2019.03.016
Haukedal H, Freude K (2019) Implications of microglia in amyotrophic lateral sclerosis and frontotemporal dementia. J Mol Biol 431(9):1818–1829
pubmed: 30763568
doi: 10.1016/j.jmb.2019.02.004
Hayat SA, Luben R, Dalzell N et al (2018) Understanding the relationship between cognition and death: a within cohort examination of cognitive measures and mortality. Eur J Epidemiol 33(11):1049–1062
pubmed: 30203336
pmcid: 6208995
doi: 10.1007/s10654-018-0439-z
Heckman MG, Kasanuki K, Brennan RR et al (2019) Association of MAPT H1 subhaplotypes with neuropathology of lewy body disease. Mov Disord 34:1325–1332
pubmed: 31234228
doi: 10.1002/mds.27773
Herrup K (2010) Reimagining Alzheimer’s disease—an age-based hypothesis. J Neurosci 30(50):16755–16762
pubmed: 21159946
pmcid: 3004746
doi: 10.1523/JNEUROSCI.4521-10.2010
Hohman TJ, Tommet D, Marks S et al (2017) Evaluating Alzheimer’s disease biomarkers as mediators of age-related cognitive decline. Neurobiol Aging 58:120–128
pubmed: 28732249
pmcid: 5710827
doi: 10.1016/j.neurobiolaging.2017.06.022
Hong S, Beja-Glasser VF, Nfonoyim BM et al (2016) Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 352(6286):712–716
pubmed: 27033548
pmcid: 5094372
doi: 10.1126/science.aad8373
Ising C, Venegas C, Zhang S et al (2019) NLRP3 inflammasome activation drives tau pathology. Nature 575(7784):669–673
pubmed: 31748742
doi: 10.1038/s41586-019-1769-z
Jack R Jr, Clifford, Bennett DA, Blennow K et al (2018) NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement 14(4):535–562
pubmed: 29653606
pmcid: 5958625
doi: 10.1016/j.jalz.2018.02.018
Jack CR Jr, Clifford R, Knopman DS, Jagust WJ et al (2013) Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol 12(2):207–216
pubmed: 23332364
pmcid: 3622225
doi: 10.1016/S1474-4422(12)70291-0
Jagust W (2013) Vulnerable neural systems and the borderland of brain aging and neurodegeneration. Neuron 77(2):219–234
pubmed: 23352159
pmcid: 3558930
doi: 10.1016/j.neuron.2013.01.002
Jansen WJ, Ossenkoppele R, Knol DL et al (2015) Prevalence of cerebral amyloid pathology in persons without dementia: a meta-analysis. Jama 313(19):1924–1938
pubmed: 25988462
pmcid: 4486209
doi: 10.1001/jama.2015.4668
Jansen IE, Savage JE, Watanabe K et al (2019) Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat Genet 51:404–413
pubmed: 30617256
pmcid: 6836675
doi: 10.1038/s41588-018-0311-9
Jay TR, von Saucken VE, Landreth GE (2017) TREM2 in neurodegenerative diseases. Mol Neurodegener 12(1):56
pubmed: 28768545
pmcid: 5541421
doi: 10.1186/s13024-017-0197-5
Jones L, Lambert J-C, Wang L-S et al (2015) Convergent genetic and expression data implicate immunity in Alzheimer’s disease. Alzheimers Dement 11(6):658–671
doi: 10.1016/j.jalz.2014.05.1757
Jun G, Ibrahim-Verbaas CA, Vronskaya M et al (2016) A novel Alzheimer disease locus located near the gene encoding tau protein. Mol Psychiatry 21(1):108
pubmed: 25778476
doi: 10.1038/mp.2015.23
Kamb A, Harper S, Stefansson K (2013) Human genetics as a foundation for innovative drug development. Nat Biotechnol 31(11):975
pubmed: 24213769
pmcid: 24213769
doi: 10.1038/nbt.2732
Karran E, Mercken M, de Strooper B (2011) The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov 10(9):698
pubmed: 21852788
doi: 10.1038/nrd3505
Keren-Shaul H, Spinrad A, Weiner A et al (2017) A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169(7):1276–1290
pubmed: 28602351
doi: 10.1016/j.cell.2017.05.018
pmcid: 28602351
Koller M, Stahel WA (2017) Nonsingular subsampling for regression S estimators with categorical predictors. Comput Stat 32(2):631–646
doi: 10.1007/s00180-016-0679-x
Kunkle BW, Grenier-Boley B, Sims R et al (2019) Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat Genet 51(3):414–430
pubmed: 30820047
pmcid: 6463297
doi: 10.1038/s41588-019-0358-2
Lacour A, Espinosa A, Louwersheimer E et al (2017) Genome-wide significant risk factors for Alzheimer’s disease: role in progression to dementia due to Alzheimer’s disease among subjects with mild cognitive impairment. Mol Psychiatry 22(1):153
pubmed: 26976043
doi: 10.1038/mp.2016.18
Lall D, Baloh RH (2017) Microglia and C9orf72 in neuroinflammation and ALS and frontotemporal dementia. J Clin Invest 127(9):3250–3258
pubmed: 28737506
pmcid: 5669558
doi: 10.1172/JCI90607
Lee CD, Daggett A, Gu X et al (2018) Elevated TREM2 gene dosage reprograms microglia responsivity and ameliorates pathological phenotypes in Alzheimer’s disease models. Neuron 97(5):1032–1048
pubmed: 29518357
pmcid: 5927822
doi: 10.1016/j.neuron.2018.02.002
Liao Y, Wang J, Jaehnig EJ et al (2019) WebGestalt 2019: gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res 47(W1):W100–W205
doi: 10.1093/nar/gkz401
Lill CM, Rengmark A, Pihlstrøm L et al (2015) The role of TREM2 R47H as a risk factor for Alzheimer’s disease, frontotemporal lobar degeneration, amyotrophic lateral sclerosis, and Parkinson’s disease. Alzheimers Dement 11(12):1407–1416
pubmed: 25936935
pmcid: 4627856
doi: 10.1016/j.jalz.2014.12.009
Magno L, Lessard CB, Martins M et al (2019) Alzheimer’s disease phospholipase C-gamma-2 (PLCG2) protective variant is a functional hypermorph. Alzheimers Res Ther 11(1):16
pubmed: 30711010
pmcid: 6359863
doi: 10.1186/s13195-019-0469-0
Makranz C, Cohen G, Baron A et al (2004) Phosphatidylinositol 3-kinase, phosphoinositide-specific phospholipase-Cγ and protein kinase-C signal myelin phagocytosis mediated by complement receptor-3 alone and combined with scavenger receptor-AI/II in macrophages. Neurobiol Dis 15(2):279–286
pubmed: 15006698
doi: 10.1016/j.nbd.2003.11.007
Mathys H, Davila-Velderrain J, Peng Z et al (2019) Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 570(7761):332–337
pubmed: 31042697
pmcid: 6865822
doi: 10.1038/s41586-019-1195-2
Muthén LK, Muthén BO (1998–2012). Mplus user’s guide, 7th Edn. Muthén & Muthén, Los Angeles, CA
Olmos-Alonso A, Schetters STT, Sri S et al (2016) Pharmacological targeting of CSF1R inhibits microglial proliferation and prevents the progression of Alzheimer’s-like pathology. Brain 139(3):891–907
pubmed: 26747862
pmcid: 4766375
doi: 10.1093/brain/awv379
Ombrello MJ, Remmers EF, Sun G et al (2012) Cold urticaria, immunodeficiency, and autoimmunity related to PLCG2 deletions. N Engl J Med 366(4):330–338
pubmed: 22236196
pmcid: 3298368
doi: 10.1056/NEJMoa1102140
Ossenkoppele R, Jansen WJ, Rabinovici GD et al (2015) Prevalence of amyloid PET positivity in dementia syndromes: a meta-analysis. Jama 313(19):1939–1950
pubmed: 25988463
pmcid: 4517678
doi: 10.1001/jama.2015.4669
Peng Q, Malhotra S, Torchia JA et al (2010) TREM2-and DAP12-dependent activation of PI3K requires DAP10 and is inhibited by SHIP1. Sci Signal 3(122):ra38–ra38
pubmed: 20484116
pmcid: 2900152
doi: 10.1126/scisignal.2000500
Plenge RM, Scolnick EM, Altshuler D (2013) Validating therapeutic targets through human genetics. Nat Rev Drug Discov 12(8):581
pubmed: 23868113
doi: 10.1038/nrd4051
Proust-Lima C, Dartigues J-F, Jacqmin-Gadda H (2011) Misuse of the linear mixed model when evaluating risk factors of cognitive decline. Am J Epidemiol 174(9):1077–1088
pubmed: 21965187
pmcid: 3551607
doi: 10.1093/aje/kwr243
Proust-Lima C, Philipps V, Liquet B (2017) Estimation of extended mixed models using latent classes and latent processes: The R package lcmm. J Stat Softw 78(2):56. https://doi.org/10.18637/jss.v078.i02
doi: 10.18637/jss.v078.i02
R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org
Raghavan N, Samtani MN, Farnum M et al (2013) The ADAS-Cog revisited: novel composite scales based on ADAS-Cog to improve efficiency in MCI and early AD trials. Alzheimers Dement 9(1):S21–S31
pubmed: 23127469
doi: 10.1016/j.jalz.2012.05.2187
Rauchmann B-S, Schneider-Axmann T, Alexopoulos P et al (2019) CSF soluble TREM2 as a measure of immune response along the Alzheimer’s disease continuum. Neurobiol Aging 74:182–190
pubmed: 30458365
doi: 10.1016/j.neurobiolaging.2018.10.022
Rayaprolu S, Mullen B, Baker M et al (2013) TREM2 in neurodegeneration: evidence for association of the p R47H variant with frontotemporal dementia and Parkinson’s disease. Mol Neurodegener 8(1):19
pubmed: 23800361
pmcid: 3691612
doi: 10.1186/1750-1326-8-19
Roberts R, Knopman DS (2013) Classification and epidemiology of MCI. Clin Geriatr Med 29(4):753–772
pubmed: 24094295
doi: 10.1016/j.cger.2013.07.003
Roberts RO, Aakre JA, Kremers WK et al (2018) Prevalence and outcomes of amyloid positivity among persons without dementia in a longitudinal, population-based setting. JAMA Neurol 75(8):970–979
pubmed: 29710225
pmcid: 6142936
doi: 10.1001/jamaneurol.2018.0629
Rongve A, Witoelar A, Ruiz A et al (2019) GBA and APOE ε4 associate with sporadic dementia with Lewy bodies in European genome wide association study. Sci Rep 9(1):7013
pubmed: 31065058
pmcid: 6504850
doi: 10.1038/s41598-019-43458-2
Schulze-Luehrmann J, Ghosh S (2006) Antigen-receptor signaling to nuclear factor κB. Immunity 25(5):701–715
pubmed: 17098202
doi: 10.1016/j.immuni.2006.10.010
Shen M-Y, Hsiao G, Fong T-H et al (2008) Expression of amyloid beta peptide in human platelets: pivotal role of the phospholipase Cγ2-protein kinase C pathway in platelet activation. Pharmacol Res 57(2):151–158
pubmed: 18313326
doi: 10.1016/j.phrs.2008.01.004
Shi Y, Holtzman DM (2018) Interplay between innate immunity and Alzheimer disease: APOE and TREM2 in the spotlight. Nat Rev Immunol 18(12):759–772
pubmed: 30140051
pmcid: 6425488
doi: 10.1038/s41577-018-0051-1
Sims R, van der Lee SJ, Naj AC et al (2017) Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer’s disease. Nat Genet 49(9):1373
pubmed: 28714976
pmcid: 5669039
doi: 10.1038/ng.3916
Song WM, Joshita S, Zhou Y et al (2018) Humanized TREM2 mice reveal microglia-intrinsic and-extrinsic effects of R47H polymorphism. J Exp Med 215(3):745–760
pubmed: 29321225
pmcid: 5839761
doi: 10.1084/jem.20171529
Sosna J, Philipp S, Albay R et al (2018) Early long-term administration of the CSF1R inhibitor PLX3397 ablates microglia and reduces accumulation of intraneuronal amyloid, neuritic plaque deposition and pre-fibrillar oligomers in 5XFAD mouse model of Alzheimer’s disease. Mol Neurodegener 13(1):11
pubmed: 29490706
pmcid: 5831225
doi: 10.1186/s13024-018-0244-x
Spangenberg EE, Lee RJ, Najafi AR et al (2016) Eliminating microglia in Alzheimer’s mice prevents neuronal loss without modulating amyloid-β pathology. Brain 139(4):1265–1281
pubmed: 26921617
pmcid: 5006229
doi: 10.1093/brain/aww016
Spangenberg E, Severson PL, Hohsfield LA et al (2019) Sustained microglial depletion with CSF1R inhibitor impairs parenchymal plaque development in an Alzheimer’s disease model. Nat Commun 10(1):1–21
doi: 10.1038/s41467-019-11674-z
Stancu I-C, Cremers N, Vanrusselt H et al (2019) Aggregated Tau activates NLRP3–ASC inflammasome exacerbating exogenously seeded and non-exogenously seeded Tau pathology in vivo. Acta Neuropathol 137(4):599–617
pubmed: 30721409
pmcid: 6426830
doi: 10.1007/s00401-018-01957-y
Suárez-Calvet M, Morenas-Rodríguez E, Kleinberger G et al (2019) Early increase of CSF sTREM2 in Alzheimer’s disease is associated with tau related-neurodegeneration but not with amyloid-β pathology. Mol Neurodegener 14(1):1
pubmed: 30630532
pmcid: 6327425
doi: 10.1186/s13024-018-0301-5
Szklarczyk D, Gable AL, Lyon D et al (2018) STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47(D1):D607–D613
pmcid: 6323986
doi: 10.1093/nar/gky1131
Terry RD, Masliah E, Salmon DP et al (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30(4):572–580
pubmed: 1789684
doi: 10.1002/ana.410300410
van Dam S, Cordeiro R, Craig T et al (2012) GeneFriends: an online co-expression analysis tool to identify novel gene targets for aging and complex diseases. BMC Genom 13(1):535
doi: 10.1186/1471-2164-13-535
van der Lee SJ, Conway OJ, Jansen I et al (2019) A nonsynonymous mutation in PLCG2 reduces the risk of Alzheimer’s disease, dementia with Lewy bodies and frontotemporal dementia, and increases the likelihood of longevity. Acta neuropathol 138:1–14
doi: 10.1007/s00401-019-02030-y
Venegas C, Kumar S, Franklin BS et al (2017) Microglia-derived ASC specks cross-seed amyloid-β in Alzheimer’s disease. Nature 552(7685):355–361
pubmed: 29293211
doi: 10.1038/nature25158
Waegaert R, Dirrig-Grosch S, Parisot F et al (2020) Longitudinal transcriptomic analysis of altered pathways in a CHMP2Bintron5-based model of ALS-FTD. Neurobiol Dis 136:104710
pubmed: 31837425
doi: 10.1016/j.nbd.2019.104710
Wood SN (2003) Thin plate regression splines. J R Stat Soc Series B Stat Methodol 65(1):95–114
doi: 10.1111/1467-9868.00374
Wood SN (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J R Stat Soc Series B Stat Methodol 73(1):3–36
doi: 10.1111/j.1467-9868.2010.00749.x
Woollacott IOC, Nicholas JM, Heslegrave A et al (2018) Cerebrospinal fluid soluble TREM2 levels in frontotemporal dementia differ by genetic and pathological subgroup. Alzheimers Res Ther 10(1):79
pubmed: 30111356
pmcid: 6094471
doi: 10.1186/s13195-018-0405-8
Yeh FL, Wang Y, Tom I et al (2016) TREM2 binds to apolipoproteins, including APOE and CLU/APOJ, and thereby facilitates uptake of amyloid-beta by microglia. Neuron 91(2):328–340
pubmed: 27477018
doi: 10.1016/j.neuron.2016.06.015
Yoshiyama Y, Higuchi M, Zhang B et al (2007) Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53(3):337–351
pubmed: 17270732
doi: 10.1016/j.neuron.2007.01.010
Zanoni I, Ostuni R, Marek LR et al (2011) CD14 controls the LPS-induced endocytosis of Toll-like receptor 4. Cell 147(4):868–880
pubmed: 22078883
pmcid: 3217211
doi: 10.1016/j.cell.2011.09.051
Zanoni I, Tan Y, Di Gioia M et al (2017) By capturing inflammatory lipids released from dying cells, the receptor CD14 induces inflammasome-dependent phagocyte hyperactivation. Immunity 47(4):697–709
pubmed: 29045901
pmcid: 5747599
doi: 10.1016/j.immuni.2017.09.010
Zhang B, Gaiteri C, Bodea L-G et al (2013) Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer’s disease. Cell 153(3):707–720
pubmed: 23622250
pmcid: 3677161
doi: 10.1016/j.cell.2013.03.030
Zhou HH, Singh V, Johnson SC et al (2018) Statistical tests and identifiability conditions for pooling and analyzing multisite datasets. Proc Natl Acad Sci 115(7):1481–1486
pubmed: 29386387
doi: 10.1073/pnas.1719747115