Bisphosphonate nanoclay edge-site interactions facilitate hydrogel self-assembly and sustained growth factor localization.
Animals
Bone Morphogenetic Protein 2
/ metabolism
Clay
Diphosphonates
/ metabolism
Drug Delivery Systems
Female
Hydrogels
/ chemistry
Intercellular Signaling Peptides and Proteins
/ metabolism
Materials Testing
Mice
Nanocomposites
/ chemistry
Nanoparticles
/ chemistry
Polymers
/ chemistry
Protein Binding
Silicates
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
13 03 2020
13 03 2020
Historique:
received:
01
10
2019
accepted:
19
02
2020
entrez:
15
3
2020
pubmed:
15
3
2020
medline:
14
7
2020
Statut:
epublish
Résumé
Nanoclays have generated interest in biomaterial design for their ability to enhance the mechanics of polymeric materials and impart biological function. As well as their utility as physical cross-linkers, clays have been explored for sustained localization of biomolecules to promote in vivo tissue regeneration. To date, both biomolecule-clay and polymer-clay nanocomposite strategies have utilised the negatively charged clay particle surface. As such, biomolecule-clay and polymer-clay interactions are set in competition, potentially limiting the functional enhancements achieved. Here, we apply specific bisphosphonate interactions with the positively charged clay particle edge to develop self-assembling hydrogels and functionalized clay nanoparticles with preserved surface exchange capacity. Low concentrations of nanoclay are applied to cross-link hyaluronic acid polymers derivatised with a pendant bisphosphonate to generate hydrogels with enhanced mechanical properties and preserved protein binding able to sustain, for over six weeks in vivo, the localized activity of the clinically licensed growth factor BMP-2.
Identifiants
pubmed: 32170076
doi: 10.1038/s41467-020-15152-9
pii: 10.1038/s41467-020-15152-9
pmc: PMC7069965
doi:
Substances chimiques
Bmp2 protein, mouse
0
Bone Morphogenetic Protein 2
0
Diphosphonates
0
Hydrogels
0
Intercellular Signaling Peptides and Proteins
0
Polymers
0
Silicates
0
laponite
D703131383
Clay
T1FAD4SS2M
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1365Subventions
Organisme : Medical Research Council
ID : MR/R015651/1
Pays : United Kingdom
Références
Luo, Y. & Shoichet, M. S. A photolabile hydrogel for guided three-dimensional cell growth and migration. Nat. Mater. 3, 249 (2004).
doi: 10.1038/nmat1092
Wylie, R. G. et al. Spatially controlled simultaneous patterning of multiple growth factors in three-dimensional hydrogels. Nat. Mater. 10, 799 (2011).
doi: 10.1038/nmat3101
Gaharwar, A. K. et al. 2D nanoclay for biomedical applications: regenerative medicine, therapeutic delivery, and additive manufacturing. Adv. Mater. 31, e1900332 (2019).
doi: 10.1002/adma.201900332
Mousa, M., Evans, N. D., Oreffo, R. O. C. & Dawson, J. I. Clay nanoparticles for regenerative medicine and biomaterial design: a review of clay bioactivity. Biomaterials 159, 204–214 (2018).
doi: 10.1016/j.biomaterials.2017.12.024
Li, J. et al. Tough composite hydrogels with high loading and local release of biological drugs. Adv. Health Mater. 7, 1701393 (2018).
doi: 10.1002/adhm.201701393
Dawson, J. I., Kanczler, J. M., Yang, X. B., Attard, G. S. & Oreffo, R. O. Clay gels for the delivery of regenerative microenvironments. Adv. Mater. 23, 3304–3308 (2011).
doi: 10.1002/adma.201100968
Page, D. et al. Injectable nanoclay gels for angiogenesis. Acta Biomater. 100, 378–387 (2019).
doi: 10.1016/j.actbio.2019.09.023
Gibbs, D. M. et al. Bone induction at physiological doses of BMP through localization by clay nanoparticle gels. Biomaterials 99, 16–23 (2016).
doi: 10.1016/j.biomaterials.2016.05.010
Dawson, J. I. & Oreffo, R. O. Clay: new opportunities for tissue regeneration and biomaterial design. Adv. Mater. 25, 4069–4086 (2013).
doi: 10.1002/adma.201301034
Wang, J., Lin, L., Cheng, Q. & Jiang, L. A strong bio-inspired layered PNIPAM–clay nanocomposite hydrogel. Angew. Chem. Int. Ed. 51, 4676–4680 (2012).
doi: 10.1002/anie.201200267
Wang, Q. et al. High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature 463, 339 (2010).
doi: 10.1038/nature08693
Jafarbeglou, M., Abdouss, M., Shoushtari, A. M. & Jafarbeglou, M. Clay nanocomposites as engineered drug delivery systems. RSC Adv. 6, 50002–50016 (2016).
doi: 10.1039/C6RA03942A
Mongondry, P., Nicolai, T. & Tassin, J.-F. Influence of pyrophosphate or polyethylene oxide on the aggregation and gelation of aqueous laponite dispersions. J. Colloid Interface Sci. 275, 191–196 (2004).
doi: 10.1016/j.jcis.2004.01.037
Pek-Ing, A. & Yee-Kwong, L. Surface chemistry and rheology of Laponite dispersions—zeta potential, yield stress, ageing, fractal dimension and pyrophosphate. Appl. Clay Sci. 107, 36–45 (2015).
doi: 10.1016/j.clay.2015.01.033
Additives, B. Instruments. Technical Information B-RI 21–Laponite–Performance Additive (2014).
Yang, X. et al. Direct “click” synthesis of hybrid bisphosphonate–hyaluronic acid hydrogel in aqueous solution for biomineralization. Chem. Mater. 24, 1690–1697 (2012).
doi: 10.1021/cm300298n
Ossipov, D. A. Bisphosphonate-modified biomaterials for drug delivery and bone tissue engineering. Expert Opin. Drug Deliv. 12, 1443–1458 (2015).
doi: 10.1517/17425247.2015.1021679
Nejadnik, M. R. et al. Self-healing hybrid nanocomposites consisting of bisphosphonated hyaluronan and calcium phosphate nanoparticles. Biomaterials 35, 6918–6929 (2014).
doi: 10.1016/j.biomaterials.2014.05.003
Hulsart-Billström, G. et al. Bisphosphonate-linked hyaluronic acid hydrogel sequesters and enzymatically releases active bone morphogenetic protein-2 for induction of osteogenic differentiation. Biomacromolecules 14, 3055–3063 (2013).
doi: 10.1021/bm400639e
Zhang, K. et al. Self-assembled injectable nanocomposite hydrogels stabilized by bisphosphonate-magnesium (Mg2+) coordination regulates the differentiation of encapsulated stem cells via dual crosslinking. Adv. Funct. Mater. 27, 1701642 (2017).
doi: 10.1002/adfm.201701642
Water, J. J. et al. Complex coacervates of hyaluronic acid and lysozyme: effect on protein structure and physical stability. Eur. J. Pharm. Biopharm. 88, 325–331 (2014).
doi: 10.1016/j.ejpb.2014.09.001
Das, K., Rawat, K. & Bohidar, H. Surface patch binding induced interaction of anisotropic nanoclays with globular plasma proteins. RSC Adv. 6, 104117–104125 (2016).
doi: 10.1039/C6RA11669H
Mumcuoglu, D. et al. Injectable BMP-2 delivery system based on collagen-derived microspheres and alginate induced bone formation in a time-and dose-dependent manner. Eur. Cell Mater. 35, 242–254 (2018).
doi: 10.22203/eCM.v035a17
Shi, L. et al. Self-healing silk fibroin-based hydrogel for bone regeneration: dynamic metal-ligand self-assembly approach. Adv. Funct. Mater. 27, 1700591 (2017).
doi: 10.1002/adfm.201700591
Kootala, S. et al. Control of growth factor binding and release in bisphosphonate functionalized hydrogels guides rapid differentiation of precursor cells in vitro. Biomater. Sci. 4, 250 (2016).
doi: 10.1039/C5BM00355E
Cesaretti, M., Luppi, E., Maccari, F. & Volpi, N. A 96-well assay for uronic acid carbazole reaction. Carbohydr. Polym. 54, 59–61 (2003).
doi: 10.1016/S0144-8617(03)00144-9
Shrivastava, V. & Gupta, B. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron. Young Sci. 2, 21 (2011).
doi: 10.4103/2229-5186.79345