Tin-graphene tubes as anodes for lithium-ion batteries with high volumetric and gravimetric energy densities.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
13 Mar 2020
Historique:
received: 22 05 2019
accepted: 17 12 2019
entrez: 15 3 2020
pubmed: 15 3 2020
medline: 15 3 2020
Statut: epublish

Résumé

Limited by the size of microelectronics, as well as the space of electrical vehicles, there are tremendous demands for lithium-ion batteries with high volumetric energy densities. Current lithium-ion batteries, however, adopt graphite-based anodes with low tap density and gravimetric capacity, resulting in poor volumetric performance metric. Here, by encapsulating nanoparticles of metallic tin in mechanically robust graphene tubes, we show tin anodes with high volumetric and gravimetric capacities, high rate performance, and long cycling life. Pairing with a commercial cathode material LiNi

Identifiants

pubmed: 32170134
doi: 10.1038/s41467-020-14859-z
pii: 10.1038/s41467-020-14859-z
pmc: PMC7069972
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1374

Références

Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).
pubmed: 11713543 doi: 10.1038/35104644 pmcid: 11713543
Arico, A. S., Bruce, P., Scrosati, B., Tarascon, J. M. & Schalkwijk, W. V. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4, 366–377 (2005).
pubmed: 15867920 doi: 10.1038/nmat1368
Chiang, Y.-M. Building a better battery. Science 330, 1485–1486 (2010).
pubmed: 21148377 doi: 10.1126/science.1198591 pmcid: 21148377
Simon, P. & Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008).
pubmed: 18956000 doi: 10.1038/nmat2297
Zhang, Q. F., Uchaker, E., Candelaria, S. L. & Cao, G. Z. Nanomaterials for energy conversion and storage. Chem. Soc. Rev. 42, 3127–3171 (2013).
pubmed: 23455759 doi: 10.1039/c3cs00009e pmcid: 23455759
Yu, P., Popov, B. N., Ritter, J. A. & White, R. E. Determination of the lithium ion diffusion coefficient in graphite. J. Electrochem. Soc. 146, 8–14 (1999).
doi: 10.1149/1.1391556
Obrovac, M. N. & Chevrier, V. L. Alloy negative electrodes for Li-ion batteries. Chem. Rev. 114, 11444–11502 (2014).
pubmed: 25399614 doi: 10.1021/cr500207g
Yoshio, M. et al. Improvement of natural graphite as a lithium-ion battery anode material, from raw flake to carbon-coated sphere. J. Mater. Chem. 14, 1754–1758 (2004).
doi: 10.1039/b316702j
Dreizler, A. M. et al. Investigation of the influence of nanostructured LiNi
doi: 10.1149/2.1061802jes
Kim, Y. S. et al. Lithium nickel cobalt manganese oxide synthesized using alkali chloride flux: morphology and performance as a cathode material for lithium ion batteries. ACS Appl. Mater. Interfaces 4, 2329–2333 (2012).
pubmed: 22497580 doi: 10.1021/am300386j
Kim, J. H. et al. Prospect and reality of Ni-rich cathode for commercialization. Adv. Energy Mater. 8, 1702028 (2018).
doi: 10.1002/aenm.201702028
Magasinski, A. et al. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater. 9, 353–358 (2010).
pubmed: 20228818 doi: 10.1038/nmat2725
Yu, Y. et al. Reversible storage of lithium in silver-coated three-dimensional macroporous silicon. Adv. Mater. 22, 2247–2250 (2010).
pubmed: 20354972 doi: 10.1002/adma.200903755
Yu, Y., Gu, L., Zhu, C., Aken, P. A. & Maier, J. Tin nanoparticles encapsulated in porous multichannel carbon microtubes: preparation by single-nozzle electrospinning and application as anode material for high-performance Li-based batteries. J. Am. Chem. Soc. 131, 15984–15985 (2009).
pubmed: 19886691 doi: 10.1021/ja906261c
Chan, C. K., Zhang, X. F. & Cui, Y. High capacity Li ion battery anodes using Ge nanowires. Nano Lett. 8, 307–309 (2008).
pubmed: 18095738 doi: 10.1021/nl0727157
Kim, M. G., Sim, S. & Cho, J. Novel core‐shell Sn‐Cu anodes for lithium rechargeable batteries prepared by a redox‐transmetalation reaction. Adv. Mater. 22, 5154–5158 (2010).
pubmed: 20941795 doi: 10.1002/adma.201002480
Xu, Y. et al. Uniform nano-Sn/C composite anodes for lithium ion batteries. Nano Lett. 13, 470–474 (2013).
pubmed: 23282084 doi: 10.1021/nl303823k
Mao, M. L. et al. Pipe-wire TiO
pubmed: 28475340 doi: 10.1021/acs.nanolett.7b01152
Inoue, H. High capacity negative-electrode materials next to carbon; Nexelion. Pap. Presente. Int. Meet. Lithium Batteries Biarritz Fr. June 228, 18–23 (2006).
Naille, S., Dedryvère, R., Zitoun, D. & Lippens, P.-E. Atomic-scale characterization of tin-based intermetallic anodes. J. Power Sources 189, 806–808 (2009).
doi: 10.1016/j.jpowsour.2008.07.049
Wang, X. L. et al. Nanospheres of a new intermetallic FeSn
pubmed: 21678973 doi: 10.1021/ja202243j
Liu, J., Wen, Y. R., van Aken, P. A., Maier, J. & Yu, Y. Facile synthesis of highly porous Ni-Sn intermetallic microcages with excellent electrochemical performance for lithium and sodium storage. Nano Lett. 14, 6387–6392 (2014).
pubmed: 25286289 doi: 10.1021/nl5028606
Behdokht, F. et al. Anodes for sodium ion batteries based on tin germanium antimony alloys. ACS Nano. 8, 4415–4429 (2014).
doi: 10.1021/nn4063598
Lin, J. et al. Self-assembled Cu-Sn-S nanotubes with high (de)lithiation performance. ACS Nano. 11, 10347–10356 (2017).
pubmed: 28898580 doi: 10.1021/acsnano.7b05294
Xu, Y. L., Peng, B. & Mulder, F. M. A high‐rate and ultrastable sodium ion anode based on a novel Sn
doi: 10.1002/aenm.201701847
Ji, L. W. et al. Multilayer nanoassembly of Sn-nanopillar arrays sandwiched between graphene layers for high-capacity lithium storage. Energy Environ. Sci. 4, 3611–3616 (2011).
doi: 10.1039/c1ee01592c
Zou, Y. Q. & Wang, Y. Sn@CNT nanostructures rooted in graphene with high and fast Li-storage capacities. ACS Nano. 5, 8108–8114 (2011).
pubmed: 21939228 doi: 10.1021/nn2027159
Han, X. G. et al. Atomic-layer-deposition oxide nanoglue for sodium ion batteries. Nano Lett. 14, 139–147 (2014).
pubmed: 24283393 doi: 10.1021/nl4035626
Zhu, Z. Q. et al. Ultrasmall Sn nanoparticles embedded in nitrogen-doped porous carbon as high-performance anode for lithium-ion batteries. Nano Lett. 14, 153–157 (2014).
pubmed: 24328829 doi: 10.1021/nl403631h
Liao, J. Y. & Manthiram, A. A hierarchical tin/carbon composite as an anode for lithium-ion batteries with a long cycle life. Adv. Energy Mater. 4, 1400403 (2014).
doi: 10.1002/aenm.201400403
Qin, J. et al. Graphene networks anchored with Sn@graphene as lithium ion battery anode. ACS Nano. 8, 1728–1738 (2014).
pubmed: 24400945 doi: 10.1021/nn406105n
Huang, X. K. et al. A hierarchical tin/carbon composite as an anode for lithium-ion batteries with a long cycle life. Angew. Chem. Int. Ed. 54, 1490–1493 (2015).
doi: 10.1002/anie.201409530
Liu, Y. C., Zhang, N., Jiao, L. F., Tao, Z. L. & Chen, J. Ultrasmall Sn nanoparticles embedded in carbon as high-performance anode for sodium-ion batteries. Adv. Funct. Mater. 25, 214–220 (2015).
doi: 10.1002/adfm.201402943
Youn, D. H., Heller, A. & Mullins, C. B. Simple synthesis of nanostructured Sn/nitrogen-doped carbon composite using nitrilotriacetic acid as lithium ion battery anode. Chem. Mater. 28, 1343–1347 (2016).
doi: 10.1021/acs.chemmater.5b04282
Zhang, H. W., Huang, X. D., Noonan, O., Zhou, L. & Yu, C. Z. Tailored yolk-shell Sn@C nanoboxes for high-performance lithium storage. Adv. Funct. Mater. 27, 1606023 (2017).
doi: 10.1002/adfm.201606023
Kravchyk, K. et al. Monodisperse and inorganically capped Sn and Sn/SnO
pubmed: 23414392 doi: 10.1021/ja312604r pmcid: 23414392
Hyung, S. I. et al. Phase evolution of tin nanocrystals in lithium ion batteries. ACS Nano. 7, 11103–11111 (2013).
doi: 10.1021/nn404837d
Hassoun, J., Panero, S., Simon, P., Taberna, P. L. & Scrosati, B. High-rate, long-life Ni–Sn nanostructured electrodes for lithium-ion batteries. Adv. Mater. 19, 1632–1635 (2007).
doi: 10.1002/adma.200602035
Liu, Y. C., Zhang, N., Jiao, L. F. & Chen, J. Tin nanodots encapsulated in porous nitrogen‐doped carbon nanofibers as a free‐standing anode for advanced sodium‐ion batteries. Adv. Mater. 27, 6702–6707 (2015).
pubmed: 26422696 doi: 10.1002/adma.201503015
Han, J. W. et al. Caging tin oxide in three-dimensional graphene networks for superior volumetric lithium storage. Nat. Commun. 9, 402 (2018).
pubmed: 29374156 pmcid: 5786064 doi: 10.1038/s41467-017-02808-2
Li, Y. Z. et al. Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes. Nano Energy 1, 15029 (2016).
Mo, R. W., Rooney, D., Sun, K. N. & Yang, H. Y. 3D nitrogen-doped graphene foam with encapsulated germanium/nitrogen-doped graphene yolk-shell nanoarchitecture for high-performance flexible Li-ion battery. Nat. Commun. 8, 13949 (2017).
pubmed: 28051065 pmcid: 5216101 doi: 10.1038/ncomms13949
Gogotsi, Y. & Simon, P. True performance metrics in electrochemical energy storage. Science 334, 917–918 (2011).
pubmed: 22096182 doi: 10.1126/science.1213003
Beattie, S. D., Hatchard, T., Bonakdarpour, A., Hewitt, K. C. & Dahn, J. R. Anomalous, high-voltage irreversible capacity in tin electrodes for lithium batteries. J. Electrochem. Soc. 150, A701–A705 (2003).
doi: 10.1149/1.1569477
Chen, Z. et al. High-performance supercapacitors based on intertwined CNT/V
pubmed: 21287644 doi: 10.1002/adma.201003658
Mo, R. W., Lei, Z. Y., Sun, K. N. & Rooney, D. Facile synthesis of anatase TiO
pubmed: 24347361 doi: 10.1002/adma.201304338
Ellis, L. D., Hatchard, T. D. & Obrovac, M. N. Reversible insertion of sodium in tin. J. Electrochem. Soc. 159, A1801–A1805 (2012).
doi: 10.1149/2.037211jes
Wang, B. et al. Folding graphene film yields high areal energy storage in lithium-ion batteries. ACS Nano. 12, 1739–1746 (2018).
pubmed: 29350526 doi: 10.1021/acsnano.7b08489
Xu, Y. X. et al. Solvated graphene frameworks as high-performance anodes for lithium-ion batteries. Angew. Chem. Int. Ed. 54, 5345–5350 (2015).
doi: 10.1002/anie.201500677
Son, I. H. et al. Graphene balls for lithium rechargeable batteries with fast charging and high volumetric energy densities. Nat. Commun. 8, 1561 (2017).
pubmed: 29146973 pmcid: 5691064 doi: 10.1038/s41467-017-01823-7
Moshtev, R. & Johnson, B. State of the art of commercial Li ion batteries. J. Power Sources 91, 86–91 (2016).
doi: 10.1016/S0378-7753(00)00458-4
Kim, N., Chae, S., Ma, J. Y., Ko, M. & Cho, J. Fast-charging high-energy lithium-ion batteries via implantation of amorphous silicon nanolayer in edge-plane activated graphite anodes. Nat. Commun. 8, 812 (2017).
pubmed: 28993658 pmcid: 5634447 doi: 10.1038/s41467-017-00973-y
Ko, M. et al. Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries. Nat. Energy 1, 16113 (2016).
doi: 10.1038/nenergy.2016.113
Zhu, G. N. et al. Carbon-coated nano-sized Li
doi: 10.1039/c1ee01680f
Johnson, B. A. & White, R. E. Characterization of commercially available lithium-ion batteries. J. Power Sources 70, 48–54 (1998).
doi: 10.1016/S0378-7753(97)02659-1
Jung, H. G., Kim, J. H., Scrosati, B. & Sun, Y. K. Micron-sized, carbon-coated Li
doi: 10.1016/j.jpowsour.2011.04.019
Wang, X. P. et al. High-density monolith of N-doped holey graphene for ultrahigh volumetric capacity of Li-ion batteries. Adv. Energy Mater. 6, 1502100 (2016).
doi: 10.1002/aenm.201502100
Liu, J. Y. et al. High volumetric capacity three-dimensionally sphere-caged secondary battery anodes. Nano Lett. 16, 4501–4507 (2016).
pubmed: 27322627 doi: 10.1021/acs.nanolett.6b01711
Luo, J. M. et al. Sn
pubmed: 26836262 doi: 10.1021/acsnano.5b07333
Liang, J. et al. Bowl-like SnO
doi: 10.1002/anie.201407917
Yin, J. F., Cao, H. Q., Zhou, Z. F., Zhang, J. X. & Qu, M. Z. SnS
doi: 10.1039/c2jm35137d
Wu, H. et al. Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat. Commun. 4, 1943 (2013).
pubmed: 23733138 doi: 10.1038/ncomms2941
Xia, F. et al. Facile synthesis of free-Standing silicon membranes with three-dimensional nanoarchitecture for anodes of lithium ion batteries. Nano Lett. 13, 3340–3346 (2013).
pubmed: 23750947 doi: 10.1021/nl401629q

Auteurs

Runwei Mo (R)

Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, USA.

Xinyi Tan (X)

Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, USA.

Fan Li (F)

Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, USA.

Ran Tao (R)

Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, USA.

Jinhui Xu (J)

Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, USA.

Dejia Kong (D)

Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, USA.

Zhiyong Wang (Z)

Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, USA.

Bin Xu (B)

State Key Laboratory of Supramolecular Structure and Materials, Jilin University, 130012, Changchun, China.

Xiang Wang (X)

Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.

Chongmin Wang (C)

Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.

Jinlai Li (J)

ENN Group, Langfang, 065001, Hebei, China.

Yiting Peng (Y)

Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, 200090, Shanghai, China. pyt_1108@shiep.edu.cn.

Yunfeng Lu (Y)

Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, USA. luucla@ucla.edu.

Classifications MeSH