Nanobiocomposite based on natural polyelectrolytes for bone regeneration.
chitosan
composites
nanohydroxyapatite
polyelectrolyte complex
tissue regeneration
Journal
Journal of biomedical materials research. Part A
ISSN: 1552-4965
Titre abrégé: J Biomed Mater Res A
Pays: United States
ID NLM: 101234237
Informations de publication
Date de publication:
05 2020
05 2020
Historique:
received:
15
11
2019
revised:
28
02
2020
accepted:
09
03
2020
pubmed:
15
3
2020
medline:
29
10
2021
entrez:
15
3
2020
Statut:
ppublish
Résumé
We developed a composite hydrogel based on chitosan and carboxymethyl cellulose with nanometric hydroxyapatite (nHA) as filler (ranging from 0.5 to 5%), by ultrasonic methodology to be used for bone regeneration. The 3D porous-structure of the biocomposite scaffolds were confirmed by Scanning Electron Microscopy and Microtomography analysis. Infrared analysis did not show specific interactions between the organic components of the composite and nHA in the scaffold. The hydrogel properties of the matrices were studied by swelling and mechanical tests, indicating that the scaffold presented a good mechanical behavior. The degradation test demonstrated that the material is slowly degraded, while the addition of nHA slightly influences the degradation of the scaffolds. Biocompatibility studies carried out with bone marrow mesenchymal progenitor cells (BMPC) showed that cell proliferation and alkaline phosphatase activity were increased depending on the matrix nHA content. On the other hand, no cytotoxic effect was observed when RAW264.7 cells were seeded on the scaffolds. Altogether, our results allow us to conclude that these nanobiocomposites are promising candidates to induce bone tissue regeneration.
Substances chimiques
Biocompatible Materials
0
Polyelectrolytes
0
Chitosan
9012-76-4
Durapatite
91D9GV0Z28
Carboxymethylcellulose Sodium
K679OBS311
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1467-1478Informations de copyright
© 2020 Wiley Periodicals, Inc.
Références
Abou Neel, E. A., Chrzanowski, W., Salih, V. M., Kim, H. W., & Knowles, J. C. (2014). Tissue engineering in dentistry. Journal of Dentistry, 42, 915-928.
Barbetta, A., Bedini, R., Pecci, R., & Dentini, M. (2012). Role of X-ray microtomography in tissue engineering. Annali dell'Istituto Superiore di Sanità, 48, 10-18.
Belluzo, M. S., Medina, L. F., Cortizo, A. M., & Cortizo, M. S. (2016). Ultrasonic compatibilization of polyelectrolyte complex based on polysaccharides for biomedical applications. Ultrasonic Sonochemistry, 30, 1-8.
Bose, S., Roy, M., & Bandyopadhyay, A. (2012). Recent advances in bone tissue engineering scaffolds. Trends in Biotechnology, 30(10), 546-554.
Bravi Costantino, M. L., Oberti, T. G., Cortizo, A. M., & Cortizo, M. S. (2019). Matrices based on lineal and star fumarate-metha/acrylate copolymers for bone tissue engineering: Characterization and biocompatibility studies. Journal of Biomedical Materials Research-Part A, 107, 195-203.
Brugnerotto, J., Lizardi, J., Goycoolea, F. M., Argüelles Monal, W., Desbriéres, J., & Rinaudo, M. (2001). An infrared investigation in relation with chitin and chitosan characterization. Polymer, 42, 3569-3580.
Cengiz, I. F., Oliveira, J. M., & Reis, R. L. (2018). Micro-CT-A digital 3D microstructural voyage into scaffolds: A systematic review of the reported methods and results. Biomaterials Research, 22, 26-37.
Chieruzzi, M., Pagano, S., Moretti, S., Pinna, R., Milia, E., & Torre, L., et al.(2016). Nanomaterials for tissue engineering in dentistry. Nanomaterials, 6, 134-155.
Cox, S. C., Thornby, J. A., Gibbons, G. J., Williams, M. A., & Mallick, K. K. (2015). 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications. Materials Science and Engineering: C, 47, 237-247.
Dziadek, M., Stodolak-Zych, E., & Cholewa-Kowalska, K. (2017). Biodegradable ceramic-polymer composites for biomedical applications: A review. Materials Science and Engineering: C, 71, 1175-1191.
Fernández, J. M., Cortizo, M. S., Cortizo, A. M., & Abraham, G. A. (2011). Osteoblast behavior on novel porous polymeric scaffolds. Journal of Biomaterials and Tissue Engineering, 1, 1-7.
Fernández, J. M., Cortizo, M. S., & Cortizo, A. M. (2014). Fumarate/ceramic composite based scaffolds for tissue engineering: Evaluation of hydrophylicity, degradability, toxicity and biocompatibility. Journal of Biomaterials and Tissue Engineering, 4, 227-234.
Fernandez, J. M., Molinuevo, M. S., Cortizo, M. S., & Cortizo, A. M. (2011). Development of an osteoconductive PCL-PDIPF-hydroxyapatite composite scaffold for bone tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 5(6), e126-e135. https://doi.org/10.1002/term.394
Hobuss, C. B., Venzke, D., Pacheco, B. S., Souza, A. O., Santos, M. A., Moura, S., … Pereira, CM. (2012). Ultrasound-assisted synthesis of aliphatic acid esters at room temperature. Ultrasonic Sonochemistry, 19, 387-389.
Iqbal, H., Ali, M., Zeeshan, R., Mutahir, Z., Iqbal, F., Nawaz, M. A. H., … Rehman, IU. (2017). Chitosan/hydroxyapatite (HA)/hydroxypropylmethyl cellulose (HPMC) spongy scaffolds-synthesis and evaluation as potential alveolar bone substitutes. Colloids and Surfaces B: Biointerfaces, 160, 553-563.
Kim, H. L., Jung, G. Y., Yoon, J. H., Han, J. S., Park, Y. J., Kim, D. G., … Kim, DJ. (2015). Preparation and characterization of nano-sized hydroxyapatite/alginate/chitosan composite scaffolds for bone tissue engineering. Materials Science and Engineering: C, 54, 20-25.
Lastra, M. L., Molinuevo, M. S., Blaszczyk-Lezak, I., Mijangos, C., & Cortizo, M. S. (2018). Nanostructured fumarate copolymer-chitosan crosslinked scaffold: An in vitro osteochondrogenesis regeneration study. Journal of Biomedical Materials Research-Part A, 106(2), 570-579.
Lastra, M. L., Molinuevo, M. S., Giussi, J. M., Allegretti, P. E., Blaszczyk-Lezak, I., Mijangos, C., & Cortizo, M. S. (2015). Tautomerizable β-ketonitrile copolymers for bone tissue engineering: Studies of biocompatibility and cytotoxicity. Materials Science & Engineering. C, Materials for Biological Applications, 51, 256-262.
Levengood, S. L., & Zhang, M. (2014). Chitosan-based scaffolds for bone tissue engineering. Journal of Materials Chemistry B, 2(21), 3161-3184.
Li, L., Yu, F., Zheng, L., Wang, R., Yan, W., Wang, Z., … Jiang, Q. (2018). Natural hydrogels for cartilage regeneration: Modification, preparation and application. Journal of Orthopaedic Translation, 17, 26-41.
Lima, P. A., Resende, C. X., Soares, G. D., Anselme, K., & Almeida, L. E. (2013). Preparation, characterization and biological test of 3D-scaffolds based on chitosan, fibroin and hydroxyapatite for bone tissue engineering. Materials Science and Engineering: C, 33, 3389-3395.
LogithKumar, R., KeshavNarayan, A., Dhivya, S., Chawla, A., Saravanan, S., & Selvamurugan, N. (2016). A review of chitosan and its derivatives in bone tissue engineering. Carbohydrate Polymers, 151, 172-188.
Ooi, C. Y., Uamdi, M. H., & Ramesh, S. (2007). Properties of hydroxyapatite produced by annealing of bovine bone. Ceramics International, 33, 1171-1177.
Pasqualone, M., Oberti, T. G., Andreetta, H. A., & Cortizo, M. S. (2013). Fumarate copolymers based membranes overlooking future transdermal delivery devices: Synthesis and properties. Journal of Materials Science: Materials in Medicine, 24, 1683-1692.
Peng, L., Zhou, Y., Lu, W., Zhu, W., Li, Y., Chen, K., … Wang, D. (2019). Characterization of a novel polyvinyl alcohol/chitosan porous hydrogel combined with bone marrow mesenchymal stem cells and its application in articular cartilage repair. BMC Musculoskeletal Disorders, 20(1), 257-269.
Peter, M., Ganesh, N., Selvamurugan, N., Nair, S. V., Furuike, T., Tamura, H., … Jayakumara, R. (2010). Preparation and characterization of chitosan-gelatin/nanohydroxyapatite composite scaffolds for tissue engineering applications. Carbohydrate Polymers, 80, 687-694.
Rezwan, K., Chen, Q. Z., Blaker, J. J., & Boccaccini, A. R. (2006). Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials, 27, 3413-3431.
Rodrigues, S. C., Salgado, C. L., Sahu, A., Garcia, M. P., Fernandes, M. H., & Monteiro, F. J. (2013). Preparation and characterization of collagen-nanohydroxyapatite biocomposite scaffolds by cryogelation method for bone tissue engineering applications. Journal of Biomedical Materials Research-Part A, 101(4), 1080-1094.
Saravanan, S., Leena, R. S., & Selvamurugan, N. (2016). Chitosan based biocomposite scaffolds for bone tissue engineering. International Journal of Biological Macromolecules, 93, 1354-1365.
Sharma, C., Dinda, A. K., Potdar, P. D., Chou, C. F., & Mishra, N. C. (2016). Fabrication and characterization of novel nano-biocomposite scaffold of chitosan-gelatin-alginate-hydroxyapatite for bone tissue engineering. Materials Science and Engineering: C, 64, 416-427.
Solanki, A., Kim, J. D., & Lee, K. B. (2008). Nanotechnology for regenerative medicine: Nanomaterials for stem cell imaging. Nanomedicine, 3(4), 567-578.
Teimouri, A., Ebrahimi, R., Emadi, R., Beni, B. H., & Chermahini, A. N. (2015). Nano-composite of silk fibroin-chitosan/Nano ZrO2 for tissue engineering applications: Fabrication and morphology. International Journal of Biological Macromolecules, 76, 292-302.
Thein-Han, W. W., & Misra, R. D. K. (2009). Biomimetic chitosan-nanohydroxyapatite composite scaffolds for bone tissue engineering. Acta Biomaterialia, 5, 1182-1197.
Türe, H. (2018). Characterization of hydroxyapatite-containing alginate-gelatin composite films as a potential wound dressing. International Journal of Biological Macromolecules, 123, 878-888.
Van Rijt, S., & Habibovic, P. (2017). Enhancing regenerative approaches with nanoparticles. Journal of the Royal Society Interface, 14, 20170093.
Wang, X., Chu, W., Zhuang, Y., Shi, D., Tao, H., Jin, C., … Gan, Y. (2019). Bone mesenchymal stem cell-enriched β-tricalcium phosphate scaffold processed by the screen-enrich-combine circulating system promotes regeneration of Diaphyseal bone non-union. Cell Transplantation, 28(2), 212-223.
Wei, G., & Ma, P. X. (2004). Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials, 25, 4749-4757.
Wei, M., Li, S., & Le, W. (2017). Nanomaterials modulate stem cell differentiation: Biological interaction and underlying mechanisms. Journal of Nanobiotechnology, 15, 75-88.
Zhang, Y., & Zhang, M. Q. (2001). Preparation of macroporous chitosan/calcium phosphate composite scaffolds for tissue engineering. Journal of Biomedical Materials Research-Part A, 55, 304-312.