Review on calcium- and magnesium-based silicates for bone tissue engineering applications.


Journal

Journal of biomedical materials research. Part A
ISSN: 1552-4965
Titre abrégé: J Biomed Mater Res A
Pays: United States
ID NLM: 101234237

Informations de publication

Date de publication:
05 2020
Historique:
received: 31 07 2019
revised: 25 02 2020
accepted: 09 03 2020
pubmed: 15 3 2020
medline: 29 10 2021
entrez: 15 3 2020
Statut: ppublish

Résumé

Bone is a self-engineered structural component of the human body with multifaceted mechanical strength, which provides indomitable support to the effective functioning of the human body. It is indispensable to find a suitable biomaterial for substituting the bone as the bone substitute material requirement is very high due to the rate of bone fracture and infection lead to osteoporosis in human beings increases rapidly. It is not an easy task to design a material with good apatite deposition ability, a faster rate of dissolution, superior resorbability, high mechanical strength, and significant bactericidal activity. Since the synthetic hydroxyapatite was not able to achieve the dahlite phase of hydroxyapatite (natural bone mineral phase), silicates emerged as an alternate biomaterial to meet the need for bone graft substitutes. All silicates do not exhibit the properties required for bone graft substitutes, as their composition and methodology adopted for the synthesis are different. Calcium, magnesium, and silicon play a major role in the formation of bone mineral and their metabolism during bone formation. In this review, the relationship between composition and activity of calcium, magnesium-based silicates have been discussed along with the future scope of these materials for hard tissue engineering applications.

Identifiants

pubmed: 32170908
doi: 10.1002/jbm.a.36925
doi:

Substances chimiques

Bone Substitutes 0
Silicates 0
Magnesium I38ZP9992A
Calcium SY7Q814VUP

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

1546-1562

Informations de copyright

© 2020 Wiley Periodicals, Inc.

Références

Abd Rashid, R., Shamsudin, R., Abdul Hamid, M. A., & Jalar, A. (2014). Low-temperature production of wollastonite from limestone and silica sand through solid-state reaction. Journal of Asian Ceramic Societies, 2, 77-81.
Abe, A., Dusek, K., & Kobayashi, S. (2010). Biopolymers: Lignin, proteins, bioactive nanocomposites (p. 212). Berlin: Springer Science & Business Media.
Agarwal, R., & García, A. J. (2015). Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair. Advanced Drug Delivery Reviews, 94, 53-62.
Aherwar, A., Singh, A. K., & Patnaik, A. (2015). Current and future biocompatibility aspects of biomaterials for hip prosthesis. AIMS Bioengineering, 3, 23-43.
Ahmed, A. A., Ali, A. A., Mahmoud, D. A., & El-Fiqi, A. M. (2011). Preparation and characterization of antibacterial P2O5-CaO-Na2O-Ag2O glasses. Journal of Biomedical Materials Research Part A, 98, 132-142.
Vallet-Regi, M., & González-Calbet, J. M. (2004). Calcium phosphates as substitution of bone tissues. Progress in Solid State Chemistry, 32, 1-31.
Antony, J. W., Bideaux, R. A., Bladh, K. W., & Nichols, M. C. (2004). Handbook of minerology. Mineralogical Society of America: Virginia.
Armentano, I., Arciola, C. R., Fortunati, E., Ferrari, D., Mattioli, S., Amoroso, C. F., … Visai, L. (2014). The interaction of bacteria with engineered nanostructured polymeric materials: A review. Scientific World Journal, 2014, 1-18.
Arvidson, K., Abdallah, B. M., Applegate, L. A., Baldini, N., Cenni, E., Gomez-Barrena, E., … Pioletti, D. P. (2011). Bone regeneration and stem cells. Journal of Cellular and Molecular Medicine, 15, 718-746.
Azeena, S., Subhapradha, N., Selvamurugan, N., Narayan, S., Srinivasan, N., Murugesan, R., … Moorthi, A. (2017). Antibacterial activity of agricultural waste derived wollastonite doped with copper for bone tissue engineering. Materials Science and Engineering: C, 71, 1156-1165.
Bafrooei, H., Barzegar, T., & Ebadzadeh, M. H. (2014). Microwave synthesis and sintering of forsterite nanopowder produced by high energy ball milling. Ceramics International, 40, 2869-2876.
Baino, F., Hamzehlou, S., & Kargozar, S. (2018). Bioactive glasses: Where are we and where are we going? Journal of Functional Biomaterials, 9, 25.
Baino, F., Novajra, G., & Vitale-Brovarone, C. (2015). Bioceramics and scaffolds: A winning combination for tissue engineering. Frontiers in Bioengineering and Biotechnology, 3, 202.
Baron, R. (2008). Anatomy and ultrastructure of bone-histogenesis, growth and remodeling. Diseases of bone and mineral metabolism. Endotext, com2008.
Basu, B., Katti, D. S., & Kumar, A. (2010). Advanced biomaterials: Fundamentals, processing, and applications (p. 778). Newyork: John Wiley & Sons.
Bellantone, M., Coleman, N. J., & Hench, L. L. (2000). Bacteriostatic action of a novel four-component bioactive glass. Journal of Biomedical Materials Research, 51, 484-490.
Bellantone, M., Williams, H. D., & Hench, L. L. (2002). Broad-spectrum bactericidal activity of Ag2O-doped bioactive glass. Antimicrobial Agents and Chemotherapy, 46, 1940-1945.
Best, S. M., Porter, A. E., Thian, E. S., & Huang, J. (2008). Bioceramics: Past, present and for the future. Journal of the European Ceramic Society, 28, 1319-1327.
Bhat, S. V. (2002). Biomaterials (p. 13). New Delhi: Alpha Science International Ltd.
Boskey, A. L., & Coleman, R. (2010). Aging and bone. Journal of Dental Research, 89, 1333-1348.
Bovand, D., Arabi, A. M., & Bovand, M. (2018). Microwave-assisted solution combustion synthesis of β-tricalcium phosphate nano-powders. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 57, 240-246.
Brady, R. A., Leid, J. G., Costerton, J. W., & Shirtliff, M. E. (2006). Osteomyelitis: Clinical overview and mechanisms of infection persistence. Clinical Microbiology Newsletter, 28, 65-72.
Bretado, L. A., Cortés, D. A., Ortega, W., & Renteria, D. (2009). Effect of magnesium content in simulated body fluid on the apatite-forming ability of wollastonite ceramics. Advances in Applied Ceramics, 108, 194-197.
Brinker, C. J., & Scherer, G. W. (2013). Sol-gel science: The physics and chemistry of sol-gel processing (p. 908). Cambridge: Academic Press.
Bueno, E. M., & Glowacki, J. (2009). Cell-free and cell-based approaches for bone regeneration. Nature Reviews Rheumatology, 5, 685-697.
Cai, X. Y., Yang, C., Zhang, Z. Y., Qiu, W. L., Chen, M. J., & Zhang, S. Y. (2010). Septic arthritis of the temporomandibular joint: A retrospective review of 40 cases. Journal of Oral and Maxillofacial Surgery, 68, 731-738.
Castiglioni, S., Cazzaniga, A., Albisetti, W., & Maier, J. A. (2013). Magnesium and osteoporosis: Current state of knowledge and future research directions. Nutrients, 5, 3022-3033.
Cerca, N., Martins, S., Pier, G. B., Oliveira, R., & Azeredo, J. (2005). The relationship between inhibition of bacterial adhesion to a solid surface by sub-MICs of antibiotics and subsequent development of a biofilm. Research in Microbiology, 156, 650-655.
Chen, L., Ye, G., Wang, Q., Blanpain, B., Malfliet, A., & Guo, M. (2015). Low-temperature synthesis of forsterite from hydromagnesite and fumed silica mixture. Ceramics International, 41, 2234-2239.
Chen, X., Ou, J., Wei, Y., Huang, Z., Kang, Y., & Yin, G. (2010). Effect of MgO contents on the mechanical properties and biological performances of bioceramics in the MgO-CaO-SiO2 system. Journal of Materials Science: Materials in Medicine, 21, 1463-1471.
Choudhary, R., Chatterjee, A., Venkatraman, S. K., Koppala, S., Abraham, J., & Swamiappan, S. (2018). Antibacterial forsterite (Mg2SiO4) scaffold: A promising bioceramic for load-bearing applications. Bioactive Materials, 3, 218-224.
Choudhary, R., Manohar, P., Vecstaudza, J., Yáñez-Gascón, M. J., Sánchez, H. P., Nachimuthu, R., … Swamiappan, S. (2017). Preparation of nanocrystalline forsterite by combustion of different fuels and their comparative in-vitro bioactivity, dissolution behaviour and antibacterial studies. Materials Science and Engineering: C, 77, 811-822.
Choudhary, R., Ravi, L., & Swamiappan, S. (2016). Silicate ceramics and its composites for hard tissue applications. In S. A. Kumar (Ed.), Eco-friendly nano-hybrid materials for advanced engineering applications (pp. 153-204). Palm Bay, FL: Apple Academic Press.
Choudhary, R., Saraswat, M., & Venkatraman, S. K. (2019). A fundamental approach toward polymers and polymer composites: Current trends for biomedical applications. In K. K. Sadasivuni, D. Ponnamma, M. Rajan, B. Ahmed, & S. A. AM (Eds.), Polymer nanocomposites in biomedical engineering (pp. 1-28). Heidelberg, Berlin: Springer, Cham.
Choudhary, R., Vecstaudza, J., Krishnamurithy, G., Raghavendran, H. R., Murali, M. R., Kamarul, T., … Locs, J. (2016). In-vitro bioactivity, biocompatibility and dissolution studies of diopside prepared from biowaste by using sol-gel combustion method. Materials Science and Engineering: C, 68, 89-100.
Coakley, G., Mathews, C., Field, M., Jones, A., Kingsley, G., Walker, D., … Weston, V. (2006). BSR & BHPR, BOA, RCGP and BSAC guidelines for management of the hot swollen joint in adults. Rheumatology, 45, 1039-1041.
Cowin, S. C. (2001). Bone mechanics handbook (p. 980). Boca Raton, FL: CRC Press.
Davies, D. (2003). Understanding biofilm resistance to antibacterial agents. Nature Reviews. Drug Discovery, 2, 114-122.
Davis, J. R. (2003). Overview of biomaterials and their use in medical devices. Handbook of materials for medical devices (pp. 1-11). Ohio: ASM International Metal Parks.
Diba, M., Goudouri, O. M., Tapia, F., & Boccaccini, A. R. (2014). Magnesium-containing bioactive polycrystalline silicate-based ceramics and glass-ceramics for biomedical applications. Current Opinion in Solid State & Materials Science, 18, 147-167.
Diba, M., Kharaziha, M., Fathi, M. H., Gholipourmalekabadi, M., & Samadikuchaksaraei, A. (2012). Preparation and characterization of polycaprolactone/forsterite nanocomposite porous scaffolds designed for bone tissue regeneration. Composites Science and Technology, 72, 716-723.
Downey, P. A., & Siegel, M. I. (2006). Bone biology and the clinical implications for osteoporosis. Physical Therapy, 86, 77-91.
Eliaz, N. (2019). Corrosion of metallic biomaterials: A review. Materials, 12, 407.
Eliaz, N., & Metoki, N. (2017). Calcium phosphate bioceramics: A review of their history, structure, properties, coating technologies and biomedical applications. Materials, 10, 334.
Emadi, R., Esfahani, S. R., & Tavangarian, F. (2010). A novel, low temperature method for the preparation of ß-TCP/HAP biphasic nanostructured ceramic scaffold from natural cancellous bone. Materials Letters, 64, 993-996.
Engin, B., Demirtaş, H., & Eken, M. (2006). Temperature effects on egg shells investigated by XRD, IR and ESR techniques. Radiation Physics and Chemistry, 75, 268-277.
Esposito, S., & Leone, S. (2008). Prosthetic joint infections: Microbiology, diagnosis, management and prevention. International Journal of Antimicrobial Agents, 32, 287-293.
Fernandes, H. R., Gaddam, A., Rebelo, A., Brazete, D., Stan, G. E., & Ferreira, J. M. (2018). Bioactive glasses and glass-ceramics for healthcare applications in bone regeneration and tissue engineering. Materials, 11, 2530.
Fiume, E., Barberi, J., Verné, E., & Baino, F. (2018). Bioactive glasses: From parent 45S5 composition to scaffold-assisted tissue-healing therapies. Journal of Functional Biomaterials, 9, 24.
Florencio-Silva, R., Sasso, G. R., Sasso-Cerri, E., Simões, M. J., & Cerri, P. S. (2015). Biology of bone tissue: Structure, function, and factors that influence bone cells. BioMed Research International, 2015, 1-17.
Fogelman, I., Gnanasegaran, G., & van der Wall, H. (Eds.). (2013). Radionuclide and hybrid bone imaging (p. 1022). Heidelberg, Berlin: Springer-Verlag.
Fratzl, P., & Weinkamer, R. (2007). Nature's hierarchical materials. Progress in Materials Science, 52, 1263-1334.
Fu, L., Khor, K. A., & Lim, J. P. (2001). Processing, microstructure and mechanical properties of yttria stabilized zirconia reinforced hydroxyapatite coatings. Materials Science and Engineering A, 316, 46-51.
Gandolfi, M. G., Shah, S. N., Feng, R., Prati, C., & Akintoye, S. O. (2011). Biomimetic calcium-silicate cement support differentiation of human orofacialmesenchymal stem cells. Journal of Endodontia, 37, 1102-1108.
Gao, T., Aro, H. T., Ylänen, H., & Vuorio, E. (2001). Silica-based bioactive glasses modulate expression of bone morphogenetic protein-2 mRNA in Saos-2 osteoblasts in vitro. Biomaterials, 22, 1475-1483.
Gayathri, N., & Nagarajan, L. (2016). Biomaterials and its applications in tissue engineering. International Journal of Scientific Research, 5, 850-857.
Geirsson, Á. J., Statkevicius, S., & Víkingsson, A. (2008). Septic arthritis in Iceland 1990-2002: Increasing incidence due to iatrogenic infections. Annals of the Rheumatic Diseases, 67, 638-643.
Gerhardt, L. C., & Boccaccini, A. R. (2010). Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials, 3, 3867-3910.
Ghomi, H., Jaberzadeh, M., & Fathi, M. H. (2011). Novel fabrication of forsterite scaffold with improved mechanical properties. Journal of Alloys and Compounds, 509, 63-68.
Gillespie, W. J. (1990). Epidemiology in bone and joint infection. Infectious Disease Clinics of North America, 4, 361-376.
Ginebra, M. P., Espanol, M., Montufar, E. B., Perez, R. A., & Mestres, G. (2010). New processing approaches in calcium phosphate cement and their applications in regenerative medicine. Acta Biomaterialia, 6, 2863-2873.
Gong, T., Xie, J., Liao, J., Zhang, T., Lin, S., & Lin, Y. (2015). Nanomaterials and bone regeneration. Bone Research, 3, 15029.
Gordon, J. B., DeSaix, P., Johnson, E., Johnson, J. E., Karol, O., Kruse, D. H., … Young, K. A. (2017). Anatomy & physiology (p. 512). Houston, TX: OpenStax College, Rice University.
Gou, Z., Chang, J., Zhai, W., & Wang, J. (2005). Study on the self-setting property and the in vitro bioactivity of β-Ca2SiO4. Journal of Biomedical Materials Research Part B, 73, 244-251.
Gough, J. E., Jones, J. R., & Hench, L. L. (2004). Nodule formation and mineralisation of human primary osteoblasts cultured on a porous bioactive glass scaffold. Biomaterials, 25, 2039-2046.
Gristina, A. G., Naylor, P., & Myrvik, Q. (1988). Infections from biomaterials and implants: A race for the surface. Medical Progress through Technology, 14, 205-224.
Gruskin, E., Doll, B. A., Futrell, F. W., Schmitz, J. P., & Hollinger, J. O. (2012). Demineralized bone matrix in bone repair: History and use. Advanced Drug Delivery Reviews, 64, 1063-1077.
Gu, H., Guo, F., Zhou, X., Gong, L., Zhang, Y., Zhai, W., … Cui, L. (2011). The stimulation of osteogenic differentiation of human adipose-derived stem cells by ionic products from akermanite dissolution via activation of the ERK pathway. Biomaterials, 32, 7023-7033.
Han, P., Wu, C., & Xiao, Y. (2013). The effect of silicate ions on proliferation, osteogenic differentiation and cell signalling pathways (WNT and SHH) of bone marrow stromal cells. Biomaterials Science, 1, 379-392.
Hench, L. L. (1991). Bioceramics: From concept to clinic. Journal of the American Ceramic Society, 74, 1487-1510.
Hench, L. L. (1998). An introduction to materials in medicine. Bioceramics, Journal of the American Ceramic Society, 81, 1705-1727.
Hench, L. L. (2013). Chronology of bioactive glass development and clinical applications. New Journal of Glass and Ceramics, 3, 67-73.
Hench, L. L., & Polak, J. M. (2002). Third-generation biomedical materials. Science, 295, 1014-1017.
Hench, L. L., Splinter, R. J., Allen, W. C., & Greenlee, T. K. (1971). Bonding mechanisms at the interface of ceramic prosthetic materials. Journal of Biomedical Materials Research, 5, 117-141.
Hench, L. L., & Thompson, I. (2010). Twenty-first-century challenges for biomaterials. Journal of the Royal Society Interface, 4, 379-391.
Hing, K. A., Revell, P. A., Smith, N., & Buckland, T. (2006). Effect of silicon level on rate, quality and progression of bone healing within silicate-substituted porous hydroxyapatite scaffolds. Biomaterials, 27, 5014-5026.
Hoppe, A., Güldal, N. S., & Boccaccini, A. R. (2011). A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials, 32, 2757-2774.
Hoppe, A., Mouriño, V., & Boccaccini, A. R. (2013). Therapeutic inorganic ions in bioactive glasses to enhance bone formation and beyond. Biomaterials Science, 1, 254-256.
Jimi, E., Hirata, S., Osawa, K., Terashita, M., Kitamura, C., & Fukushima, H. (2012). The current and future therapies of bone regeneration to repair bone defects. International Journal of Dentistry, 2012, 1-7.
Jones, J. R. (2013). Review of bioactive glass: From Hench to hybrids. Acta Biomaterialia, 9, 4457-4486.
Jugdaohsingh, R. (2007). Silicon and bone health. The Journal of Nutrition, Health & Aging, 11, 99-110.
Kara, S. (2012). A roadmap of biomedical engineers and milestones (p. 240). London: IntechOpen.
Kharaziha, M., & Fathi, M. H. (2009). Synthesis and characterization of bioactive forsterite nanopowder. Ceramics International, 35, 2449-2454.
Kharaziha, M., & Fathi, M. H. (2010). Improvement of mechanical properties and biocompatibility of forsterite bioceramic addressed to bone tissue engineering materials. Journal of the Mechanical Behavior of Biomedical Materials, 3, 530-537.
King, W., Toler, K., & Woodell-May, J. (2018). Role of white blood cells in blood-and bone marrow-based autologous therapies. BioMed Research International, 2018, 1-8.
Lakshmi, R., & Sasikumar, S. (2015). Influence of needle-like morphology on the bioactivity of nanocrystalline wollastonite-an in vitro study. International Journal of Nanomedicine, 1, 129-136.
Langdahl, B., Ferrari, S., & Dempster, D. W. (2016). Bone modeling and remodeling: Potential as therapeutic targets for the treatment of osteoporosis. Therapeutic Advances in Musculoskeletal Disease, 8, 225-235.
Lazzarini, L., Mader, J. T., & Calhoun, J. H. (2004). Osteomyelitis in long bones. Journal of Bone and Joint Surgery, 86, 2305-2318.
Lee, J. B., Park, H. N., Ko, W. K., Bae, M. S., Heo, D. N., Yang, D. H., & Kwon, I. K. (2013). Poly (l-lactic acid)/hydroxyapatite nanocylinders as nanofibrous structure for bone tissue engineering scaffolds. Journal of Biomedical Nanotechnology, 9, 424-429.
Li, H. C., Wang, D. G., Chen, C. Z., & Shi, H. (2015). Microstructure, in vitro bioactivity and degradability of various magnesia-containing wollastonite. Materials Letters, 159, 459-462.
Liao, X., Lu, S., Zhuo, Y., Winter, C., Xu, W., Li, B., & Wang, Y. (2011). Bone physiology, biomaterial and the effect of mechanical/physical microenvironment on mesenchymal stem cell osteogenesis. Cellular and Molecular Bioengineering, 4, 579-590.
Lidgren, L., Knutson, K., & Stefánsdóttir, A. (2003). Infection of prosthetic joints. Best Practice & Research. Clinical Rheumatology, 17, 209-218.
Lin, K., Lin, C., & Zeng, Y. (2016). High mechanical strength bioactive wollastonite bioceramics sintered from nanofibers. RSC Advances, 6, 13867-13872.
Liu, D. M., Yang, Q., & Troczynski, T. (2002). Sol-gel hydroxyapatite coatings on stainless steel substrates. Biomaterials, 23, 691-698.
Lu, C. Z., & Fey, G. T. (2006). Nanocrystalline and long cycling LiMn2O4 cathode material derived by a solution combustion method for lithium ion batteries. Journal of Physics and Chemistry of Solids, 67, 756-761.
Marieb, E. N., & Hoehn, K. (2007). Human anatomy & physiology (p. 1159). San Francisco: Pearson Education.
Mathews, C. J., Weston, V. C., Jones, A., Field, M., & Coakley, G. (2010). Bacterial septic arthritis in adults. The Lancet, 375, 846-855.
Mimani, T. (2000). Fire synthesis. Resonance, 5, 50-57.
Mirhadi, S. M., Tavangarian, F., & Emadi, R. (2012). Synthesis, characterization and formation mechanism of single-phase nanostructure bredigite powder. Materials Science and Engineering: C, 32, 133-139.
Mohammadi, H., Hafezi, M., Nezafati, N., Heasarki, S., Nadernezhad, A., Ghazanfari, S. M., & Sepantafar, M. (2014). Bioinorganics in bioactive calcium silicate ceramics for bone tissue repair: Bioactivity and biological properties. Journal of Ceramic Science and Technology, 5, 1-12.
Moorthi, A., Vimalraj, S., Avani, C., He, Z., Partridge, N. C., & Selvamurugan, N. (2013). Expression of microRNA-30c and its target genes in human osteoblastic cells by nano-bioglass ceramic-treatment. International Journal of Biological Macromolecules, 56, 181-185.
Naghiu, M. A., Gorea, M., Mutch, E., Kristaly, F., & Tomoaia-Cotisel, M. (2013). Forsterite nanopowder: Structural characterization and biocompatibility evaluation. Journal of Materials Science and Technology, 29, 628-632.
Najafinezhad, A., Abdellahi, M., Ghayour, H., Soheily, A., Chami, A., & Khandan, A. (2017). A comparative study on the synthesis mechanism, bioactivity and mechanical properties of three silicate bioceramics. Materials Science and Engineering: C, 7, 259-267.
Neto, A. S., & Ferreira, J. M. (2018). Synthetic and marine-derived porous scaffolds for bone tissue engineering. Materials, 11, 1702.
Ni, S., & Chang, J. (2009). In vitro degradation, bioactivity, and cytocompatibility of calcium silicate, dimagnesium silicate, and tricalcium phosphate bioceramics. Journal of Biomaterials Applications, 24, 139-158.
Ni, S., Chou, L., & Chang, J. (2007). Preparation and characterization of forsterite (Mg2SiO4) bioceramics. Ceramics International, 33, 83-88.
Nikolova, M. P., & Chavali, M. S. (2019). Recent advances in biomaterials for 3D scaffolds: A review. Bioactive Materials, 4, 271-292.
Olsztynska, S., & Komorowska, M. (2011). Biomedical engineering: Trends, research and technologies (p. 644). IntechOpen: Rijeka, Croatia.
Oonishi, H., Hench, L. L., Wilson, J., Sugihara, F., Tsuji, E., Matsuura, M., … Mizokawa, S. (2000). Quantitative comparison of bone growth behavior in granules of Bioglass®, A-W glass-ceramic, and hydroxyapatite. Journal of Biomedical Materials Research, 51, 37-46.
Oryan, A., Monazzah, S., & Bigham-Sadegh, A. (2015). Bone injury and fracture healing biology. Biomedical and Environmental Sciences, 28, 57-71.
Osterhoff, G., Morgan, E. F., Shefelbine, S. J., Karim, L., McNamara, L. M., & Augat, P. (2016). Bone mechanical properties and changes with osteoporosis. Injury, 47, 11-20.
Padmanabhan, S. K., Gervaso, F., Carrozzo, M., Scalera, F., Sannino, A., & Licciulli, A. (2013). Wollastonite/hydroxyapatite scaffolds with improved mechanical, bioactive and biodegradable properties for bone tissue engineering. Ceramics International, 39, 619-627.
Patel, N. R., & Gohil, P. P. (2012). A review on biomaterials: Scope, applications & human anatomy significance. International Journal of Emerging Technology and Advanced Engineering, 4, 91-101.
Philip, N. S., Jakribettu, R. P., Boloor, R., & Adiga, R. (2018). Characterisation of aerobic bacteria isolated from orthopaedic implant-associated infections. Journal of Academy of Clinical Microbiologists, 20, 33.
Pietak, A. M., Reid, J. W., Stott, M. J., & Sayer, M. (2007). Silicon substitution in the calcium phosphate bioceramics. Biomaterials, 28, 4023-4032.
Piras, C. C., Fernández-Prieto, S., & De Borggraeve, W. M. (2019). Ball milling: A green technology for the preparation and functionalisation of nanocellulose derivatives. Nanoscale Advances, 1, 937-947.
Prakasam, M., Locs, J., Salma-Ancane, K., Loca, D., Largeteau, A., & Berzina-Cimdina, L. (2017). Biodegradable materials and metallic implants-A review. Journal of Functional Biomaterials, 8, 44.
Prasad, K., Bazaka, O., Chua, M., Rochford, M., Fedrick, L., Spoor, J., … Markwell, D. (2017). Metallic biomaterials: Current challenges and opportunities. Materials, 10, 884.
Ramesh, S., Yaghoubi, A., Lee, K. S., Chin, K. C., Purbolaksono, J., Hamdi, M., & Hassan, M. A. (2013). Nanocrystalline forsterite for biomedical applications: Synthesis, microstructure and mechanical properties. Journal of the Mechanical Behavior of Biomedical Materials, 25, 63-69.
Reffitt, D. M., Ogston, N., Jugdaohsingh, R., Cheung, H. F., Evans, B. A., Thompson, R. P., … Hampson, G. N. (2003). Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone, 32, 127-135.
Rezwan, K., Chen, Q. Z., Blaker, J. J., & Boccaccini, A. R. (2006). Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials, 27, 3413-3431.
Ribeiro, M., Monteiro, F. J., & Ferraz, M. P. (2012). Infection of orthopedic implants with emphasis on bacterial adhesion process and techniques used in studying bacterial-material interactions. Biomatter, 2, 176-194.
Rohde, H., Burandt, E. C., Siemssen, N., Frommelt, L., Burdelski, C., Wurster, S., … Knobloch, J. K. (2007). Polysaccharide intercellular adhesin or protein factors in biofilm accumulation of Staphylococcus epidermidis and Staphylococcus aureus isolated from prosthetic hip and knee joint infections. Biomaterials, 28, 1711-1720.
Ruiz-Hitzky, E., Ariga, K., & Lvov, Y. M. (2008). Bio-inorganic hybrid nanomaterials: Strategies, synthesis, characterization and applications (p. 524). Newyork: John Wiley & Sons.
Saima, S., Jan, S. M., Shah, A. F., Yousuf, A., & Batra, M. (2016). Bone grafts and bone substitutes in dentistry. Journal of Oral Research and Review, 8, 36-38.
Saini, M., Singh, Y., Arora, P., Arora, V., & Jain, K. (2015). Implant biomaterials: A comprehensive review. World Journal of Clinical Cases, 3, 52-57.
Santos, A., Bakker, A. D., & Klein-Nulend, J. (2009). The role of osteocytes in bone mechanotransduction. Osteoporosis International, 20, 1027-1031.
Santos, J. G., Jr., Pita, V. J., Melo, P. A., Nele, M., & Pinto, J. C. (2011). Production of bone cement composites: Effect of fillers, co-monomer and particles properties. Brazilian Journal of Chemical Engineering, 28, 229-241.
Saravanan, S., Vimalraj, S., Vairamani, M., & Selvamurugan, N. (2015). Role of mesoporous wollastonite (calcium silicate) in mesenchymal stem cell proliferation and osteoblast differentiation: A cellular and molecular study. Journal of Biomedical Nanotechnology, 11, 1124-1138.
Sawan, S. P., & Manivannan, G. (2000). Antimicrobial/anti-infective materials. Pennsylvania: Technomic Publishers.
Schwarz, K. (1973). A bound form of silicon in glycosaminoglycans and polyuronides. Proceedings of the National Academy of Sciences, 70, 1608-1612.
Schwarz, K., Ricci, B., Punsar, S., & Karvonen, M. (1977). Inverse relation of silicon in drinking water and atherosclerosis in Finland. The Lancet, 309, 538-539.
Setiawati, R., & Rahardjo, P. (2018). Bone development and growth. In H. Yang (Ed.), Osteogenesis and bone regeneration (pp. 1-20). London: IntechOpen.
Shalumon, K. T., Sowmya, S., Sathish, D., Chennazhi, K. P., Nair, S. V., & Jayakumar, R. (2013). Effect of incorporation of nanoscale bioactive glass and hydroxyapatite in PCL/chitosan nanofibers for bone and periodontal tissue engineering. Journal of Biomedical Nanotechnology, 9, 430-440.
Shapiro, F. (2008). Bone development and its relation to fracture repair. The role of mesenchymal osteoblasts and surface osteoblasts. European Cells & Materials, 15, 53-76.
Sheikh, Z., Najeeb, S., Khurshid, Z., Verma, V., Rashid, H., & Glogauer, M. (2015). Biodegradable materials for bone repair and tissue engineering applications. Materials, 8, 5744-5794.
Sherikar, B. N., & Umarji, A. M. (2013). Synthesis of diopside by solution combustion process using glycine fuel. International Journal of Modern Physics: Conference Series, 22, 217-223.
Siraparapu, Y. D., Bassa, S., & Sanasi, P. D. (2013). A review on recent applications of biomaterials. International Journal of Scientific Research, 1, 70-75.
Stoor, P., Söderling, E., & Salonen, J. I. (1998). Antibacterial effects of a bioactive glass paste on oral microorganisms. Acta Odontologica Scandinavica, 56, 161-165.
Swarup, S., & Rao, A. (2013). Bioceramics in pediatricendodontics (p. 148). Riga, Latvia: Lap Lambert Academic Publishing.
Tanaka, Y., Nakayamada, S., & Okada, Y. (2005). Osteoblasts and osteoclasts in bone remodeling and inflammation. Current Drug Targets. Inflammation and Allergy, 4, 325-328.
Tavangarian, F., & Emadi, R. (2011). Improving degradation rate and apatite formation ability of nanostructure forsterite. Ceramics International, 37, 2275-2280.
Teo, A. J., Mishra, A., Park, I., Kim, Y. J., Park, W. T., & Yoon, Y. J. (2016). Polymeric biomaterials for medical implants and devices. ACS Biomaterials Science & Engineering, 2, 454-472.
Thamaraiselvi, T., & Rajeswari, S. (2004). Biological evaluation of bioceramic materials-a review. Carbon, 24, 172.
Trampuz, A., Osmon, D. R., Hanssen, A. D., Steckelberg, J. M., & Patel, R. (2003). Molecular and antibiofilm approaches to prosthetic joint infection. Clinical Orthopaedics and Related Research, 414, 69-88.
Vallet-Regí, M. (2001). Ceramics for medical applications. Journal of the Chemical Society, 2, 97-108.
Vichaphund, S., Kitiwan, M., Atong, D., & Thavorniti, P. (2011). Microwave synthesis of wollastonite powder from eggshells. Journal of the European Ceramic Society, 31, 2435-2440.
Vuong, C., & Otto, M. (2002). Staphylococcus epidermidis infections. Microbes and Infection, 4, 481-489.
Wang, K., Zhou, C., Hong, Y., & Zhang, X. (2012). A review of protein adsorption on bioceramics. Interface Focus, 2, 259-277.
Wang, M. (2003). Developing bioactive composite materials for tissue replacement. Biomaterials, 24, 2133-2151.
Wang, Q., Gu, Z., Jamal, S., Detamore, M. S., & Berkland, C. (2013). Hybrid hydroxyapatite nanoparticle colloidal gels are injectable fillers for bone tissue engineering. Tissue Engineering Part A, 19, 2586-2593.
Wattanasiriwech, D., & Wattanasiriwech, S. (2013). Effects of fuel contents and surface modification on the sol-gel combustion Ce0.9Gd0.1O1.95 nanopowder. Energy Procedia, 34, 524-533.
Wei, J., Chen, F., Shin, J. W., Hong, H., Dai, C., Su, J., & Liu, C. (2009). Preparation and characterization of bioactive mesoporous wollastonite-polycaprolactone composite scaffold. Biomaterials, 30, 1080-1088.
Weichert, S., Sharland, M., Clarke, N. M., & Faust, S. N. (2008). Acute haematogenous osteomyelitis in children: Is there any evidence for how long we should treat? Current Opinion in Infectious Diseases, 21, 258-262.
West, A. R. (2014). Solid state chemistry and its applications (p. 760). New York: John Wiley & Sons.
Wright, J. A., & Nair, S. P. (2010). Interaction of staphylococci with bone. International Journal of Medical Microbiology, 300, 193-204.
Wu, C., & Chang, J. (2007). Degradation, bioactivity, and cytocompatibility of diopside, akermanite, and bredigite ceramics. Journal of Biomedical Materials Research Part B, 83, 153-160.
Wu, C., & Chang, J. (2013). A review of bioactive silicate ceramics. Biomedical Materials, 8, 032001.
Wu, C., Chang, J., Ni, S., & Wang, J. (2006). In vitro bioactivity of akermanite ceramics. Journal of Biomedical Materials Research. Part A, 76, 73-80.
Wu, C., Chang, J., Wang, J., Ni, S., & Zhai, W. (2005). Preparation and characteristics of a calcium magnesium silicate (bredigite) bioactive ceramic. Biomaterials, 26, 2925-2931.
Wu, Z. J., Zhao, X. B., Tu, J., Cao, G. S., Tu, J. P., & Zhu, T. J. (2005). Synthesis of Li1+ xV3O8 by citrate sol-gel route at low temperature. Journal of Alloys and Compounds, 403, 345-348.
Xia, L., Zhang, Z., Chen, L., Zhang, W., Zeng, D., Zhang, X., … Jiang, X. (2011). Proliferation and osteogenic differentiation of human periodontal ligament cells on akermanite and β-TCP bioceramics. European Cells & Materials, 22, 68-82.
Xu, S., Lin, K., Wang, Z., Chang, J., Wang, L., Lu, J., & Ning, C. (2008). Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics. Biomaterials, 29, 2588-2596.
Xue, W., Liu, X., Zheng, X., & Ding, C. (2005). In vivo evaluation of plasma-sprayed wollastonite coating. Biomaterials, 26, 3455-3460.
Xynos, I. D., Edgar, A. J., Buttery, L. D., Hench, L. L., & Polak, J. M. (2000). Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis. Biochemical and Biophysical Research Communications, 276, 461-465.
Xynos, I. D., Edgar, A. J., Buttery, L. D., Hench, L. L., & Polak, J. M. (2001). Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass® 45S5 dissolution. Journal of Biomedical Materials Research, 55, 151-157.
Xynos, I. D., Hukkanen, M. V., Batten, J. J., Buttery, L. D., Hench, L. L., & Polak, J. M. (2000). Bioglass® 45S5 stimulates osteoblast turnover and enhances bone formation in vitro: Implications and applications for bone tissue engineering. Calcified Tissue International, 67, 321-329.
Yoruc, A. B., & Sener, B. C. (2007). Examination of the properties of Ti-6Al-4V based plates after oral and maxillofacial application. Journal of Optoelectronics and Advanced Materials, 9(8), 2627-2633.
Zhai, W., Lu, H., Chen, L., Lin, X., Huang, Y., Dai, K., … Chang, J. (2012). Silicate bioceramics induce angiogenesis during bone regeneration. Acta Biomaterialia, 8, 341-349.
Zhang, D., Leppäranta, O., Munukka, E., Ylänen, H., Viljanen, M. K., Eerola, E., … Hupa, L. (2010). Antibacterial effects and dissolution behavior of six bioactive glasses. Journal of Biomedical Materials Research Part A, 93, 475-483.
Zhao, W., Wang, J., Zhai, W., Wang, Z., & Chang, J. (2005). The self-setting properties and in vitro bioactivity of tricalcium silicate. Biomaterials, 26, 6113-6121.
Zimmerli, W. (2006). Prosthetic-joint-associated infections. Best Practice & Research: Clinical Rheumatology, 20, 1045-1063.

Auteurs

Senthil Kumar Venkatraman (SK)

Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, India.

Sasikumar Swamiappan (S)

Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, India.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH