Antibody-modified magnetic nanoparticles as specific high-efficient cell-separation agents.


Journal

Journal of biomedical materials research. Part B, Applied biomaterials
ISSN: 1552-4981
Titre abrégé: J Biomed Mater Res B Appl Biomater
Pays: United States
ID NLM: 101234238

Informations de publication

Date de publication:
08 2020
Historique:
received: 13 09 2019
revised: 09 01 2020
accepted: 22 02 2020
pubmed: 15 3 2020
medline: 6 11 2021
entrez: 15 3 2020
Statut: ppublish

Résumé

Separation of tumor cells is a promising approach that helps not only in early detection of cancer but also as an efficient tool that holds great importance in prohibiting cancer cell mutation, drug resistance to treatments, and in granting successful adjuvant therapies. As one of the highly efficient processes for the separation of single cells, tumor cells, and specific proteins from fresh whole blood, a magnetic iron oxide nanoparticle (IONP)-based immunomagnetic separation technique has been developed in this article. The synthesized IONPs were modified with antibodies (Abs) against human epithelial growth factor receptor 2 (HER2), which is overexpressed and/or amplified in about 15% of breast cancer patients with several types of human cancer cells. The prepared Ab-conjugated IONPs (Ab-IONPs) attach HER2-positive cancer cells exclusively and can serve as specific high-efficient single-cell separation agents. The results showed that the magnetic IONPs have been successfully attached to the Abs via 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide linkers. Maximum targeting efficiency of the Ab-IONP complex, which was 94.5 ± 0.8% for BT474 and 70.6 ± 0.4% for mixture of cells (BT474 and MCF7), was achieved with a minimum amount of Abs, to provide an economically efficient single-cell detection device.

Identifiants

pubmed: 32170916
doi: 10.1002/jbm.b.34595
doi:

Substances chimiques

Antibodies, Neoplasm 0
Immunotoxins 0
Magnetite Nanoparticles 0
ERBB2 protein, human EC 2.7.10.1
Receptor, ErbB-2 EC 2.7.10.1

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2633-2642

Informations de copyright

© 2020 Wiley Periodicals, Inc.

Références

Alric, C., Aubrey, N., Allard-Vannier, É., di Tommaso, A., Blondy, T., Dimier-Poisson, I., … Hervé-Aubert, K. (2016). Covalent conjugation of cysteine-engineered scFv to PEGylated magnetic nanoprobes for immunotargeting of breast cancer cells. RSC Advances, 6(43), 37099-37109.
Ashour, R. M., el-sayed, R., Abdel-Magied, A. F., Abdel-khalek, A. A., Ali, M. M., Forsberg, K., … Dutta, J. (2017). Selective separation of rare earth ions from aqueous solution using functionalized magnetite nanoparticles: Kinetic and thermodynamic studies. Chemical Engineering Journal, 327, 286-296.
Bell, G., Bogart, L. K., Southern, P., Olivo, M., Pankhurst, Q. A., & Parkin, I. P. (2017). Enhancing the magnetic heating capacity of iron oxide nanoparticles through their postproduction incorporation into iron oxide-gold nanocomposites. European Journal of Inorganic Chemistry, 2017(18), 2386-2395.
Chen, P., Huang, Y. Y., Hoshino, K., & Zhang, X. (2014). Multiscale immunomagnetic enrichment of circulating tumor cells: From tubes to microchips. Lab on a Chip, 14(3), 446-458.
Cho, H.-Y., Hossain, M. K., Lee, J. H., Han, J., Lee, H. J., Kim, K. J., … Choi, J. W. (2018). Selective isolation and noninvasive analysis of circulating cancer stem cells through Raman imaging. Biosensors and Bioelectronics, 102, 372-382.
Figueroa-Magalhães, M. C., Jelovac, D., Connolly, R. M., & Wolff, A. C. (2014). Treatment of HER2-positive breast cancer. The Breast, 23(2), 128-136.
Friedrich, R. P., Zaloga, J., Schreiber, E., Tóth, I. Y., Tombácz, E., Lyer, S., & Alexiou, C. (2016). Tissue plasminogen activator binding to superparamagnetic iron oxide nanoparticle-Covalent versus adsorptive approach. Nanoscale Research Letters, 11(1), 297.
Gazzola, D., Vincenzi, S., Pasini, G., Lomolino, G., & Curioni, A. (2015). Advantages of the KDS/BCA assay over the Bradford assay for protein quantification in white wine and grape juice. American Journal of Enology and Viticulture, 66(2), 227-233.
He, F. (2011). Bradford protein assay. Bio-Protocol, 1(6), e45.
Hernández-Hernández, A. A., Álvarez-Romero, G. A., Contreras-López, E., Aguilar-Arteaga, K., & Castañeda-Ovando, A. (2017). Food analysis by microextraction methods based on the use of magnetic nanoparticles as supports: Recent advances. Food Analytical Methods, 10(9), 2974-2993.
Ho, Y. T., Poinard, B., Yeo, E. L. L., & Kah, J. C. Y. (2015). An instantaneous colorimetric protein assay based on spontaneous formation of a protein corona on gold nanoparticles. Analyst, 140(4), 1026-1036.
Hoshino, K., Huang, Y. Y., Lane, N., Huebschman, M., Uhr, J. W., Frenkel, E. P., & Zhang, X. (2011). Microchip-based immunomagnetic detection of circulating tumor cells. Lab on a Chip, 11(20), 3449-3457.
Kim, H.-I., Hwang, D., Jeon, S. J., Lee, S., Park, J. H., Yim, D. B., … Kim, J. H. (2015). Orientation and density control of bispecific anti-HER2 antibody on functionalized carbon nanotubes for amplifying effective binding reactivity to cancer cells. Nanoscale, 7(14), 6363-6373.
Lawson, D. A., Bhakta, N. R., Kessenbrock, K., Prummel, K. D., Yu, Y., Takai, K., … Werb, Z. (2015). Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells. Nature, 526(7571), 131-135.
Lin, M., Gao, Y., Diefenbach, T. J., Shen, J. K., Hornicek, F. J., Park, Y. I., … Duan, Z. (2017). Facial layer-by-layer engineering of upconversion nanoparticles for gene delivery: Near-infrared-initiated fluorescence resonance energy transfer tracking and overcoming drug resistance in ovarian cancer. ACS Applied Materials & Interfaces, 9(9), 7941-7949.
Lu, A. H., Salabas, E.e. L., & Schüth, F. (2007). Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angewandte Chemie International Edition, 46(8), 1222-1244.
Patris, S., de Pauw, P., Vandeput, M., Huet, J., van Antwerpen, P., Muyldermans, S., & Kauffmann, J. M. (2014). Nanoimmunoassay onto a screen printed electrode for HER2 breast cancer biomarker determination. Talanta, 130, 164-170.
Prai-in, Y., Boonthip, C., Rutnakornpituk, B., Wichai, U., Montembault, V., Pascual, S., … Rutnakornpituk, M. (2016). Recyclable magnetic nanocluster crosslinked with poly (ethylene oxide)-block-poly (2-vinyl-4, 4-dimethylazlactone) copolymer for adsorption with antibody. Materials Science and Engineering: C, 67, 285-293.
Rojas, J. M., Gavilán, H., del Dedo, V., Lorente-Sorolla, E., Sanz-Ortega, L., da Silva, G. B., … Gutiérrez, L. (2017). Time-course assessment of the aggregation and metabolization of magnetic nanoparticles. Acta Biomaterialia, 58, 181-195.
Schücker, K., Sauer, M., & Benavente, R. (2018). Superresolution imaging of the synaptonemal complex. Methods in Cell Biology, 145, 335-346.
Sharma, S., Zapatero-Rodríguez, J., Saxena, R., O'Kennedy, R., & Srivastava, S. (2018). Ultrasensitive direct impedimetric immunosensor for detection of serum HER2. Biosensors and Bioelectronics, 106, 78-85.
Tiwari, D. K., Tanaka, S.-I., Inouye, Y., Yoshizawa, K., Watanabe, T. M., & Jin, T. (2009). Synthesis and characterization of anti-HER2 antibody conjugated CdSe/CdZnS quantum dots for fluorescence imaging of breast cancer cells. Sensors, 9(11), 9332-9354.
Vasavda, C., Zaccor, N. W., Scherer, P. C., Sumner, C. J., & Snyder, S. H. (2017). Measuring G-protein-coupled receptor signaling via radio-labeled GTP binding. Journal of Visualized Experiments: JoVE, 124, 3.
Villegas-Serralta, E., Zavala, O., Flores-Urquizo, I. A., García-Casillas, P. E., & Chapa González, C. (2018). Detection of HER2 through antibody immobilization is influenced by the properties of the magnetite nanoparticle coating. Journal of Nanomaterials, 2018, 1-9.
Xu, H., Aguilar, Z. P., Yang, L., Kuang, M., Duan, H., Xiong, Y., … Wang, A. (2011). Antibody conjugated magnetic iron oxide nanoparticles for cancer cell separation in fresh whole blood. Biomaterials, 32(36), 9758-9765.
Yang, H.-M., Park, C. W., Woo, M. A., Kim, M. I., Jo, Y. M., Park, H. G., & Kim, J. D. (2010). HER2/neu antibody conjugated poly (amino acid)-coated iron oxide nanoparticles for breast cancer MR imaging. Biomacromolecules, 11(11), 2866-2872.
Yavuz, C. T., Mayo, J. T., Yu, W. W., Prakash, A., Falkner, J. C., Yean, S., … Colvin, V. L. (2006). Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science, 314(5801), 964-967.
Zhang, C., Pan, D., Luo, K., She, W., Guo, C., Yang, Y., & Gu, Z. (2014). Peptide dendrimer-doxorubicin conjugate-based nanoparticles as an enzyme-responsive drug delivery system for cancer therapy. Advanced Healthcare Materials, 3(8), 1299-1308.
Zhang, X., Wang, H., Yang, C., du, D., & Lin, Y. (2013). Preparation, characterization of Fe3O4 at TiO2 magnetic nanoparticles and their application for immunoassay of biomarker of exposure to organophosphorus pesticides. Biosensors and Bioelectronics, 41, 669-674.

Auteurs

Arezoo Saei (A)

Protein Research Center, Shahid Beheshti University, Tehran, Iran.

Shima Asfia (S)

Protein Research Center, Shahid Beheshti University, Tehran, Iran.

Hasan Kouchakzadeh (H)

Protein Research Center, Shahid Beheshti University, Tehran, Iran.

Moones Rahmandoust (M)

Protein Research Center, Shahid Beheshti University, Tehran, Iran.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH