Automatic Detection of Target Engagement in Transcutaneous Cervical Vagal Nerve Stimulation for Traumatic Stress Triggers.
Adolescent
Adult
Aged
Electrocardiography
Heart Rate
/ physiology
Humans
Machine Learning
Middle Aged
Monitoring, Ambulatory
/ methods
Neck
/ innervation
Photoplethysmography
Signal Processing, Computer-Assisted
Stress Disorders, Traumatic
/ therapy
Vagus Nerve Stimulation
/ methods
Wearable Electronic Devices
Young Adult
Journal
IEEE journal of biomedical and health informatics
ISSN: 2168-2208
Titre abrégé: IEEE J Biomed Health Inform
Pays: United States
ID NLM: 101604520
Informations de publication
Date de publication:
07 2020
07 2020
Historique:
pubmed:
17
3
2020
medline:
8
5
2021
entrez:
17
3
2020
Statut:
ppublish
Résumé
Transcutaneous cervical vagal nerve stimulation (tcVNS) devices are attractive alternatives to surgical implants, and can be applied for a number of conditions in ambulatory settings, including stress-related neuropsychiatric disorders. Transferring tcVNS technologies to at-home settings brings challenges associated with the assessment of therapy response. The ability to accurately detect whether tcVNS has been effectively delivered in a remote setting such as the home has never been investigated. We designed and conducted a study in which 12 human subjects received active tcVNS and 14 received sham stimulation in tandem with traumatic stress, and measured continuous cardiopulmonary signals including the electrocardiogram (ECG), photoplethysmogram (PPG), seismocardiogram (SCG), and respiratory effort (RSP). We extracted physiological parameters related to autonomic nervous system activity, and created a feature set from these parameters to: 1) detect active (vs. sham) tcVNS stimulation presence with machine learning methods, and 2) determine which sensing modalities and features provide the most salient markers of tcVNS-based changes in physiological signals. Heart rate (ECG), vasomotor activity (PPG), and pulse arrival time (ECG+PPG) provided sufficient information to determine target engagement (compared to sham) in addition to other combinations of sensors. resulting in 96% accuracy, precision, and recall with a receiver operator characteristics area of 0.96. Two commonly utilized sensing modalities (ECG and PPG) that are suitable for home use can provide useful information on therapy response for tcVNS. The methods presented herein could be deployed in wearable devices to quantify adherence for at-home use of tcVNS technologies.
Identifiants
pubmed: 32175881
doi: 10.1109/JBHI.2020.2981116
pmc: PMC7393996
mid: NIHMS1608707
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
1917-1925Subventions
Organisme : RRD VA
ID : I01 RX003418
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH120262
Pays : United States
Organisme : NHLBI NIH HHS
ID : K23 HL127251
Pays : United States
Organisme : NIMH NIH HHS
ID : K24 MH076955
Pays : United States
Organisme : NIDA NIH HHS
ID : UG3 DA048502
Pays : United States
Références
J Inflamm Res. 2018 May 16;11:203-213
pubmed: 29844694
IEEE J Biomed Health Inform. 2015 Jul;19(4):1414-27
pubmed: 25312966
Front Hum Neurosci. 2016 Jun 24;10:284
pubmed: 27445739
Epilepsy Res. 2019 Jul;153:83-84
pubmed: 30952581
Behav Res Ther. 2019 Feb;113:25-31
pubmed: 30583233
Behav Res Ther. 2017 Oct;97:64-74
pubmed: 28719827
Psychol Med. 2005 Jun;35(6):791-806
pubmed: 15997600
Sci Rep. 2019 Aug 7;9(1):11452
pubmed: 31391505
Biol Psychol. 2019 Mar;142:80-89
pubmed: 30710565
J Affect Disord. 2016 May;195:172-9
pubmed: 26896810
Neuromodulation. 2016 Apr;19(3):283-90
pubmed: 26990318
Am J Psychiatry. 1999 Nov;156(11):1787-95
pubmed: 10553744
J Clin Psychiatry. 1985 Sep;46(9):383-4
pubmed: 4030702
IEEE Trans Biomed Eng. 2015 Aug;62(8):1879-901
pubmed: 26057530
Brain Stimul. 2020 Jan - Feb;13(1):47-59
pubmed: 31439323
AMIA Annu Symp Proc. 2020 Mar 04;2019:1061-1070
pubmed: 32308903
PLoS One. 2011;6(7):e21864
pubmed: 21818274
Am J Physiol Heart Circ Physiol. 2015 Nov;309(9):H1579-90
pubmed: 26371172
PLoS One. 2019 May 8;14(5):e0216278
pubmed: 31067240
Am J Physiol Heart Circ Physiol. 2015 Nov 15;309(10):H1740-52
pubmed: 26371171
Front Med (Lausanne). 2017 Jul 31;4:124
pubmed: 28824913
J Affect Disord. 2015 Jul 1;179:23-30
pubmed: 25845746
Nature. 2011 Feb 3;470(7332):101-4
pubmed: 21228773
Brain Stimul. 2014 Nov-Dec;7(6):871-7
pubmed: 25164906
Eur J Neurol. 2015 Sep;22(9):1260-8
pubmed: 25614179
Neurobiol Learn Mem. 2016 Jul;132:49-56
pubmed: 27222436
Psychophysiology. 1997 Nov;34(6):623-48
pubmed: 9401419
Pain. 2016 Apr;157(4):797-805
pubmed: 26645547
Pain. 2014 May;155(5):1037-42
pubmed: 24530613
Cell. 2018 Apr 5;173(2):529
pubmed: 29625058
Circ Res. 1971 Nov;29(5):437-45
pubmed: 4330524
Biol Psychiatry. 2016 Feb 15;79(4):266-73
pubmed: 25963932
Curr Opin Neurobiol. 2015 Feb;30:38-43
pubmed: 25222617
Physiol Meas. 2007 Mar;28(3):R1-39
pubmed: 17322588
Neurogastroenterol Motil. 2017 May;29(5):
pubmed: 27957782
Auton Neurosci. 2000 Dec 20;85(1-3):1-17
pubmed: 11189015
Brain Stimul. 2017 Jan - Feb;10(1):19-27
pubmed: 28104084
IEEE Trans Biomed Eng. 2013 Mar;60(3):610-24
pubmed: 23380851
Behav Res Ther. 2004 Jan;42(1):1-12
pubmed: 14744519
Neuromodulation. 2017 Apr;20(3):290-300
pubmed: 27898202
Brain Stimul. 2018 Nov - Dec;11(6):1225-1238
pubmed: 30217648
Brain Stimul. 2018 Jul - Aug;11(4):699-708
pubmed: 29716843
Pain. 2017 Aug;158(8):1461-1472
pubmed: 28541256
Front Psychiatry. 2018 Mar 13;9:44
pubmed: 29593576
Eur J Psychotraumatol. 2015 May 19;6:27180
pubmed: 25994019
Front Behav Neurosci. 2014 Sep 18;8:327
pubmed: 25278857