Thermal Behavior of Green Cellulose-Filled Thermoplastic Elastomer Polymer Blends.
cellulose fibers
differential scanning calorimetry
ethylene-norbornene copolymer
thermogravimetric analysis
Journal
Molecules (Basel, Switzerland)
ISSN: 1420-3049
Titre abrégé: Molecules
Pays: Switzerland
ID NLM: 100964009
Informations de publication
Date de publication:
12 Mar 2020
12 Mar 2020
Historique:
received:
10
02
2020
revised:
09
03
2020
accepted:
10
03
2020
entrez:
18
3
2020
pubmed:
18
3
2020
medline:
18
12
2020
Statut:
epublish
Résumé
A recently developed cellulose hybrid chemical treatment consists of two steps: solvent exchange (with ethanol or hexane) and chemical grafting of maleic anhydride (MA) on the surface of fibers. It induces a significant decrease in cellulose moisture content and causes some changes in the thermal resistance of analyzed blend samples, as well as surface properties. The thermal characteristics of ethylene-norbornene copolymer (TOPAS) blends filled with hybrid chemically modified cellulose fibers (UFC100) have been widely described on the basis of differential scanning calorimetry and thermogravimetric analysis. Higher thermal stability is observed for the materials filled with the fibers which were dried before any of the treatments carried out. Dried cellulose filled samples start to degrade at approximately 330 °C while undried UFC100 specimens begin to degrade around 320 °C. Interestingly, the most elevated thermal resistance was detected for samples filled with cellulose altered only with solvents (both ethanol and hexane). In order to support the supposed thermal resistance trends of prepared blend materials, apparent activation energies assigned to cellulose degradation (E
Identifiants
pubmed: 32178229
pii: molecules25061279
doi: 10.3390/molecules25061279
pmc: PMC7143982
pii:
doi:
Substances chimiques
Elastomers
0
Polyesters
0
Solvents
0
elastomeric polymer
0
Cellulose
9004-34-6
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Ministry of Higher Education, Malaysia
ID : x
Organisme : undefined <span style="color:gray;font-size:10px;">undefined</span>
ID : x
Références
Bioresour Technol. 2014;152:384-92
pubmed: 24316482
Chem Rev. 2015 Nov 25;115(22):12251-85
pubmed: 26495747
Carbohydr Polym. 2014 Aug 30;109:102-17
pubmed: 24815407
Carbohydr Polym. 2013 Jul 25;96(2):549-59
pubmed: 23768600
Molecules. 2019 Jul 23;24(14):
pubmed: 31340473
Molecules. 2019 Oct 03;24(19):
pubmed: 31623296
Bioresour Technol. 2012 Apr;109:148-53
pubmed: 22306076
Molecules. 2019 Oct 05;24(19):
pubmed: 31590357
J Colloid Interface Sci. 2003 Jul 15;263(2):580-9
pubmed: 12909051
Biomacromolecules. 2004 Jul-Aug;5(4):1200-5
pubmed: 15244431
Molecules. 2019 Oct 16;24(20):
pubmed: 31623140
Biomacromolecules. 2003 Sep-Oct;4(5):1238-43
pubmed: 12959589
Polymers (Basel). 2019 Jul 11;11(7):
pubmed: 31336791
Talanta. 2017 Jan 1;162:10-18
pubmed: 27837804
Molecules. 2019 Jul 31;24(15):
pubmed: 31370227
Materials (Basel). 2017 Dec 26;11(1):
pubmed: 29278367
Langmuir. 2009 Sep 15;25(18):11078-81
pubmed: 19735153
Materials (Basel). 2014 Aug 25;7(9):6105-6119
pubmed: 28788179
Int J Biol Macromol. 2016 Dec;93(Pt A):296-313
pubmed: 27521847