Causal networks for climate model evaluation and constrained projections.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
16 03 2020
16 03 2020
Historique:
received:
25
07
2019
accepted:
24
02
2020
entrez:
18
3
2020
pubmed:
18
3
2020
medline:
18
3
2020
Statut:
epublish
Résumé
Global climate models are central tools for understanding past and future climate change. The assessment of model skill, in turn, can benefit from modern data science approaches. Here we apply causal discovery algorithms to sea level pressure data from a large set of climate model simulations and, as a proxy for observations, meteorological reanalyses. We demonstrate how the resulting causal networks (fingerprints) offer an objective pathway for process-oriented model evaluation. Models with fingerprints closer to observations better reproduce important precipitation patterns over highly populated areas such as the Indian subcontinent, Africa, East Asia, Europe and North America. We further identify expected model interdependencies due to shared development backgrounds. Finally, our network metrics provide stronger relationships for constraining precipitation projections under climate change as compared to traditional evaluation metrics for storm tracks or precipitation itself. Such emergent relationships highlight the potential of causal networks to constrain longstanding uncertainties in climate change projections.
Identifiants
pubmed: 32179737
doi: 10.1038/s41467-020-15195-y
pii: 10.1038/s41467-020-15195-y
pmc: PMC7076021
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1415Références
Stocker, T. F. et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Geneva, Switzerland. (Cambridge University Press, Cambridge, United Kingdom and New York, USA).
Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).
doi: 10.1175/BAMS-D-11-00094.1
Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).
doi: 10.5194/gmd-9-1937-2016
Rea, G., Riccio, A., Fierli, F., Cairo, F. & Cagnazzo, C. Stratosphere-resolving CMIP5 models simulate different changes in the Southern Hemisphere. Clim. Dyn. 50, 2239–2255 (2018).
doi: 10.1007/s00382-017-3746-2
Friedlingstein, P. et al. Uncertainties in CMIP5 Climate Projections due to Carbon Cycle Feedbacks. J. Clim. 27, 511–526 (2014).
doi: 10.1175/JCLI-D-12-00579.1
Nowack, P. J. et al. A large ozone-circulation feedback and its implications for global warming assessments. Nat. Clim. Change 5, 41–45 (2015).
doi: 10.1038/nclimate2451
Nowack, P. J., Abraham, N. L., Braesicke, P. & Pyle, J. A. The impact of stratospheric ozone feedbacks on climate sensitivity estimates. J. Geophys. Res. Atmos. 123, 4630–4641 (2018).
doi: 10.1002/2017JD027943
Shindell, D. T. & Faluvegi, G. Climate response to regional radiative forcing during the twentieth century. Nat. Geosci. 2, 294–300 (2009).
doi: 10.1038/ngeo473
Bastos, A. et al. European land CO
pubmed: 26777730
pmcid: 4735626
doi: 10.1038/ncomms10315
Bell, C. J., Gray, L. J., Charlton-Perez, A. J., Joshi, M. M. & Scaife, A. A. Stratospheric Communication of El Niño Teleconnections to European winter. J. Clim. 22, 4083–4096 (2009).
doi: 10.1175/2009JCLI2717.1
Hourdin, F. et al. The art and science of climate model tuning. Bull. Am. Meteorol. Soc. 98, 589–602 (2017).
doi: 10.1175/BAMS-D-15-00135.1
Knutti, R. The end of model democracy? Clim. Change 102, 395–404 (2010).
doi: 10.1007/s10584-010-9800-2
Sherwood, S. C., Bony, S. & Dufresne, J.-L. Spread in model climate sensitivity traced to atmospheric convective mixing. Nature 505, 37–42 (2014).
pubmed: 24380952
doi: 10.1038/nature12829
Shepherd, T. G. Atmospheric circulation as a source of uncertainty in climate change projections. Nat. Geosci. 7, 703–708 (2014).
doi: 10.1038/ngeo2253
Knutti, R. & Sedláček, J. Robustness and uncertainties in the new CMIP5 climate model projections. Nat. Clim. Change 3, 369–373 (2013).
doi: 10.1038/nclimate1716
Bellenger, H., Guilyardi, E., Leloup, J., Lengaigne, M. & Vialard, J. ENSO representation in climate models: from CMIP3 to CMIP5. Clim. Dyn. 42, 1999–2018 (2014).
doi: 10.1007/s00382-013-1783-z
Langenbrunner, B. & Neelin, J. D. Analyzing ENSO teleconnections in CMIP models as a measure of model fidelity in simulating precipitation. J. Clim. 26, 4431–4446 (2013).
doi: 10.1175/JCLI-D-12-00542.1
Wenzel, S., Eyring, V., Gerber, E. P. & Karpechko, A. Y. Constraining future summer austral jet stream positions in the CMIP5 ensemble by process-oriented multiple diagnostic regression. J. Clim. 29, 673–687 (2016).
doi: 10.1175/JCLI-D-15-0412.1
Eyring, V. et al. Taking climate model evaluation to the next level. Nat. Clim. Change 9, 102–110 (2019).
doi: 10.1038/s41558-018-0355-y
Eyring, V. et al. A strategy for process-oriented validation of coupled chemistry-climate models. Bull. Am. Meteorol. Soc. 86, 1117–1133 (2005).
doi: 10.1175/BAMS-86-8-1117
Spirtes, P. Introduction to causal inference. J. Mach. Learn. Res. 11, 1643–1662 (2010).
Runge, J. Causal network reconstruction from time series: From theoretical assumptions to practical estimation. Chaos 28, 075310 (2018).
pubmed: 30070533
doi: 10.1063/1.5025050
Runge, J., Nowack, P., Kretschmer, M., Flaxman, S. & Sejdinovic, D. Detecting and quantifying causal associations in large nonlinear time series datasets. Sci. Adv. 5, eaau4996 (2019).
pubmed: 31807692
pmcid: 6881151
doi: 10.1126/sciadv.aau4996
Kretschmer, M., Coumou, D., Donges, J. F. & Runge, J. Using causal effect networks to analyze different Arctic drivers of mid-latitude winter circulation. J. Clim. 29, 4069–4081 (2016).
doi: 10.1175/JCLI-D-15-0654.1
Runge, J. et al. Identifying causal gateways and mediators in complex spatio-temporal systems. Nat. Commun. 6, 8502 (2015).
pubmed: 26443010
pmcid: 4633716
doi: 10.1038/ncomms9502
Runge, J. et al. Inferring causation from time series in Earth system sciences. Nat. Commun. 10, 2553 (2019).
pubmed: 31201306
pmcid: 6572812
doi: 10.1038/s41467-019-10105-3
Kretschmer, M., Runge, J. & Coumou, D. Early prediction of extreme stratospheric polar vortex states based on causal precursors. Geophys. Res. Lett. 44, 8592–8600 (2017).
doi: 10.1002/2017GL074696
Trenberth, K. E. et al. Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res. 103, 14291–14324 (1998).
doi: 10.1029/97JC01444
Yeh, S. W. et al. ENSO atmospheric teleconnections and their response to greenhouse gas forcing. Rev. Geophys. 56, 185–206 (2018).
doi: 10.1002/2017RG000568
Bjerknes, J. Atmospheric teleconnections from the equatorial Pacific. Mon. Weather Rev. 97, 163–172 (1969).
doi: 10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2
Braesicke, P., Morgenstern, O. & Pyle, J. Might dimming the sun change atmospheric ENSO teleconnections as we know them? Atmos. Sci. Lett. 12, 184–188 (2011).
doi: 10.1002/asl.294
Deng, Y. & Ebert-Uphoff, I. Weakening of atmospheric information flow in a warming climate in the Community Climate System Model. Geophys. Res. Lett. 41, 193–200 (2014).
doi: 10.1002/2013GL058646
Ebert-Uphoff, I. & Deng, Y. A new type of climate network based on probabilistic graphical models: results of boreal winter versus summer. Geophys. Res. Lett. 39, L19701 (2012).
doi: 10.1029/2012GL053269
Kaiser, H. F. The varimax criterion for varimax rotation in factor analysis. Psychometrika 23, 187–204 (1958).
doi: 10.1007/BF02289233
Vautard, R. & Ghil, M. Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Phys. D. Nonlinear Phenom. 35, 395–424 (1989).
doi: 10.1016/0167-2789(89)90077-8
Hannachi, A., Jolliffe, I. T. & Stephenson, D. B. Empirical orthogonal functions and related techniques in atmospheric science: a review. Int. J. Climatol. 27, 1119–1152 (2007).
doi: 10.1002/joc.1499
Vejmelka, M. et al. Non-random correlation structures and dimensionality reduction in multivariate climate data. Clim. Dyn. 44, 2663–2682 (2015).
doi: 10.1007/s00382-014-2244-z
Stan, C. et al. Review of tropical-extratropical teleconnections on intraseasonal time scales. Rev. Geophys. 55, 902–937 (2017).
doi: 10.1002/2016RG000538
Nowack, P. J., Braesicke, P., Abraham, N. L. & Pyle, J. A. On the role of ozone feedback in the ENSO amplitude response under global warming. Geophys. Res. Lett. 44, 3858–3866 (2017).
pubmed: 28781392
pmcid: 5518766
doi: 10.1002/2016GL072418
Karoly, D. J. Southern Hemisphere Circulation Features Associated with El Niño-Southern Oscillation Events. J. Clim. 2, 1239–1252 (1989).
doi: 10.1175/1520-0442(1989)002<1239:SHCFAW>2.0.CO;2
Hegerl, G. C. et al. Detecting greenhouse-gas-induced climate change with an optimal fingerprint method. J. Clim. 9, 2281–2306 (1996).
doi: 10.1175/1520-0442(1996)009<2281:DGGICC>2.0.CO;2
Hegerl, G., Zwiers, F. & Tebaldi, C. Patterns of change: whose fingerprint is seen in global warming? Environ. Res. Lett. 6, 044025 (2011).
doi: 10.1088/1748-9326/6/4/044025
Batehup, R., McGregor, S. & Gallant, A. J. E. The influence of non-stationary teleconnections on palaeoclimate reconstructions of ENSO variance using a pseudoproxy framework. Clim. Past 11, 1733–1749 (2015).
doi: 10.5194/cp-11-1733-2015
Ashcroft, L., Gergis, J. & Karoly, D. J. Long-term stationarity of El Niño–Southern Oscillation teleconnections in southeastern Australia. Clim. Dyn. 46, 2991–3006 (2016).
doi: 10.1007/s00382-015-2746-3
Knutti, R. et al. A climate model projection weighting scheme accounting for performance and interdependence. Geophys. Res. Lett. 44, 1909–1918 (2017).
Sanderson, B. M., Knutti, R. & Caldwell, P. Addressing interdependency in a multimodel ensemble by interpolation of model properties. J. Clim. 28, 5150–5170 (2015).
doi: 10.1175/JCLI-D-14-00361.1
Sanderson, B. M., Wehner, M. & Knutti, R. Skill and independence weighting for multi-model assessments. Geosci. Model Dev. 10, 2379–2395 (2017).
doi: 10.5194/gmd-10-2379-2017
Bishop, C. H. & Abramowitz, G. Climate model dependence and the replicate Earth paradigm. Clim. Dyn. 41, 885–900 (2013).
doi: 10.1007/s00382-012-1610-y
Abramowitz, G. & Bishop, C. H. Climate model dependence and the ensemble dependence transformation of CMIP projections. J. Clim. 28, 2332–2348 (2015).
doi: 10.1175/JCLI-D-14-00364.1
Jones, C. D. et al. The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci. Model Dev. 4, 543–570 (2011).
doi: 10.5194/gmd-4-543-2011
Collins, W. J. et al. Development and evaluation of an Earth-System model–HadGEM2. Geosci. Model Dev. 4, 1051–1075 (2011).
doi: 10.5194/gmd-4-1051-2011
Kalnay, E. et al. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. Meteorol. Soc. 77, 437–472 (1996).
doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
Kruskal, W. H. & Wallis, W. A. Use of ranks in one-criterion variance analysis. Anal. J. Am. Stat. Assoc. 47, 583–621 (1952).
doi: 10.1080/01621459.1952.10483441
Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).
doi: 10.1002/qj.828
Chen, L. & Frauenfeld, O. W. A comprehensive evaluation of precipitation simulations over China based on CMIP5 multimodel ensemble projections. J. Geophys. Res. Atmos. 119, 5767–5786 (2014).
doi: 10.1002/2013JD021190
Taylor, K. E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. 106, 7183–7192 (2001).
doi: 10.1029/2000JD900719
Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations - the CRU TS3.10 dataset. Int. J. Climatol. 34, 623–642 (2014).
doi: 10.1002/joc.3711
Blackmon, M. L. A Climatological Spectral Study of the 500 mb Geopotential Height of the Northern Hemisphere. J. Atmos. Sci. 33, 1607–1623 (1976).
doi: 10.1175/1520-0469(1976)033<1607:ACSSOT>2.0.CO;2
Ulbrich, U. et al. Changing Northern Hemisphere Storm Tracks in an Ensemble of IPCC Climate Change Simulations. J. Clim. 21, 1669–1679 (2008).
doi: 10.1175/2007JCLI1992.1
Byrne, M. P. & O’Gorman, P. A. Trends in continental temperature and humidity directly linked to ocean warming. Proc. Natl. Acad. Sci. 115, 4863–4868 (2018).
pubmed: 29686095
doi: 10.1073/pnas.1722312115
Seneviratne, S. I. et al. Impact of soil moisture-climate feedbacks on CMIP5 projections: First results from the GLACE-CMIP5 experiment. Geophys. Res. Lett. 40, 5212–5217 (2013).
doi: 10.1002/grl.50956
Falasca, F., Bracco, A., Nenes, A. & Fountalis, I. Dimensionality Reduction and Network Inference for Climate Data Using δ ‐MAPS: Application to the CESM Large Ensemble Sea Surface Temperature. J. Adv. Model. Earth Syst. 11, 1479–1515 (2019).
doi: 10.1029/2019MS001654
Boers, N. et al. Complex networks reveal global pattern of extreme-rainfall teleconnections. Nature 566, 373–377 (2019).
pubmed: 30700912
doi: 10.1038/s41586-018-0872-x
Flato, G. et al. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 741–866 (Cambridge University Press, Cambridge, United Kingdom and New York, USA).
Eyring, V. et al. ESMValTool (v1.0) - a community diagnostic and performance metrics tool for routine evaluation of Earth system models in CMIP. Geosci. Model Dev. 9, 1747–1802 (2016).
doi: 10.5194/gmd-9-1747-2016
Alex, H., Cox, P., Huntingford, C. & Klein, S. Progressing emergent constraints on future climate change. Nat. Clim. Change 9, 269–278 (2019).
doi: 10.1038/s41558-019-0436-6
Collins, M. et al. Challenges and opportunities for improved understanding of regional climate dynamics. Nat. Clim. Change 8, 101–108 (2018).
doi: 10.1038/s41558-017-0059-8
Nowack, P. et al. Using machine learning to build temperature-based ozone parameterizations for climate sensitivity simulations. Environ. Res. Lett. 13, 104016 (2018).
doi: 10.1088/1748-9326/aae2be
Reichstein, M. et al. Deep learning and process understanding for data-driven Earth system science. Nature 566, 195–204 (2019).
pubmed: 30760912
doi: 10.1038/s41586-019-0912-1
Ebert-Uphoff, I. & Deng, Y. Causal discovery for climate research using graphical models. J. Clim. 25, 5648–5665 (2012).
doi: 10.1175/JCLI-D-11-00387.1
Monteleoni, C. et al. Climate Informatics. In Computational Intelligent Data Analysis for Sustainable Development; Data Mining and Knowledge Discovery Series. (eds Yu, T., Chawla, N. & Simoff, S.) 81–126 (2013).
Bódai, T. Predictability of threshold exceedances in dynamical systems. Phys. D. Nonlinear Phenom. 313, 37–50 (2015).
doi: 10.1016/j.physd.2015.08.007
Herein, M., Drótos, G., Bódai, T., Lunkeit, F. & Lucarini, V. Reconsidering the relationship of the El Niño-Southern Oscillation and the Indian monsoon using ensembles in Earth system models. Preprint at: https://arxiv.org/abs/1803.08909 (2019).
Rasmussen, C.E. & Williams, C.K.I. Gaussian Processes for Machine Learning. (MIT Press, 2006).
Lawrence, B. N. et al. Storing and manipulating environmental big data with JASMIN, 2013 IEEE Int. Conf. on Big Data, 68–75 (2013).
Rowell, D. P., Senior, C. A., Vellinga, M. & Graham, R. J. Can climate projection uncertainty be constrained over Africa using metrics of contemporary performance? Clim. Change 134, 621–633 (2016).
doi: 10.1007/s10584-015-1554-4