PfCERLI1 is a conserved rhoptry associated protein essential for Plasmodium falciparum merozoite invasion of erythrocytes.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
16 03 2020
16 03 2020
Historique:
received:
23
05
2019
accepted:
15
02
2020
entrez:
18
3
2020
pubmed:
18
3
2020
medline:
28
7
2020
Statut:
epublish
Résumé
The disease-causing blood-stage of the Plasmodium falciparum lifecycle begins with invasion of human erythrocytes by merozoites. Many vaccine candidates with key roles in binding to the erythrocyte surface and entry are secreted from the large bulb-like rhoptry organelles at the apical tip of the merozoite. Here we identify an essential role for the conserved protein P. falciparum Cytosolically Exposed Rhoptry Leaflet Interacting protein 1 (PfCERLI1) in rhoptry function. We show that PfCERLI1 localises to the cytosolic face of the rhoptry bulb membrane and knockdown of PfCERLI1 inhibits merozoite invasion. While schizogony and merozoite organelle biogenesis appear normal, biochemical techniques and semi-quantitative super-resolution microscopy show that PfCERLI1 knockdown prevents secretion of key rhoptry antigens that coordinate merozoite invasion. PfCERLI1 is a rhoptry associated protein identified to have a direct role in function of this essential merozoite invasion organelle, which has broader implications for understanding apicomplexan invasion biology.
Identifiants
pubmed: 32179747
doi: 10.1038/s41467-020-15127-w
pii: 10.1038/s41467-020-15127-w
pmc: PMC7075938
doi:
Substances chimiques
Protozoan Proteins
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1411Références
World_Health_Organization. World Malaria Report 2017. who.int/malaria/publications/world-malaria-report-2017/en (2017).
Cowman, A. F., Healer, J., Marapana, D. & Marsh, K. Malaria: biology and disease. Cell 167, 610–624 (2016).
doi: 10.1016/j.cell.2016.07.055
pubmed: 27768886
pmcid: 27768886
Cowman, A. F., Tonkin, C. J., Tham, W. H. & Duraisingh, M. T. The molecular basis of erythrocyte invasion by malaria parasites. Cell Host Microbe 22, 232–245 (2017).
doi: 10.1016/j.chom.2017.07.003
pubmed: 28799908
pmcid: 28799908
Beeson, J. G. et al. Merozoite surface proteins in red blood cell invasion, immunity and vaccines against malaria. FEMS Microbiol. Rev. 40, 343–372 (2016).
doi: 10.1093/femsre/fuw001
pubmed: 26833236
pmcid: 26833236
Boyle, M. J., Wilson, D. W. & Beeson, J. G. New approaches to studying Plasmodium falciparum merozoite invasion and insights into invasion biology. Int. J. Parasitol. 43, 1–10 (2013).
doi: 10.1016/j.ijpara.2012.11.002
pubmed: 23220090
pmcid: 23220090
Burns, A. L. et al. Targeting malaria parasite invasion of red blood cells as an antimalarial strategy. FEMS Microbiol. Rev. https://doi.org/10.1093/femsre/fuz005 (2019).
Riglar, D. T. et al. Super-resolution dissection of coordinated events during malaria parasite invasion of the human erythrocyte. Cell Host Microbe 9, 9–20, https://doi.org/10.1016/j.chom.2010.12.003 (2011).
doi: 10.1016/j.chom.2010.12.003
pubmed: 21238943
pmcid: 21238943
Counihan, N. A., Kalanon, M., Coppel, R. L. & de Koning-Ward, T. F. Plasmodium rhoptry proteins: why order is important. Trends Parasitol. 29, 228–236 (2013).
doi: 10.1016/j.pt.2013.03.003
pubmed: 23570755
pmcid: 23570755
Richard, D. et al. Interaction between Plasmodium falciparum apical membrane antigen 1 and the rhoptry neck protein complex defines a key step in the erythrocyte invasion process of malaria parasites. J. Biol. Chem. 285(19), 14815–22 (2010).
doi: 10.1074/jbc.M109.080770
pubmed: 20228060
pmcid: 20228060
Counihan, N. A. et al. Plasmodium falciparum parasites deploy RhopH2 into the host erythrocyte to obtain nutrients, grow and replicate. eLife 6, e23217 (2017).
doi: 10.7554/eLife.23217
pubmed: 28252383
pmcid: 28252383
Hanssen, E. et al. Electron tomography of Plasmodium falciparum merozoites reveals core cellular events that underpin erythrocyte invasion. Cell. Microbiol. 15, 1457–1472 (2013).
doi: 10.1111/cmi.12132
pubmed: 23461734
pmcid: 23461734
Topolska, A. E., Lidgett, A., Truman, D., Fujioka, H. & Coppel, R. L. Characterization of a Membrane-associated Rhoptry Protein of Plasmodium falciparum. J. Biol. Chem. 279, 4648–4656 (2004).
doi: 10.1074/jbc.M307859200
pubmed: 14613941
pmcid: 14613941
Cabrera, A. et al. Dissection of minimal sequence requirements for rhoptry membrane targeting in the malaria parasite. Traffic 13, 1335–1350 (2012).
doi: 10.1111/j.1600-0854.2012.01394.x
pubmed: 22759070
pmcid: 22759070
Geiger, M. et al. Structural Insights Into PfARO and characterization of its interaction with PfAIP. J. Mol. Biol. https://doi.org/10.1016/j.jmb.2019.12.024 (2019).
Mueller, C. et al. Structural and functional dissection of Toxoplasma gondii armadillo repeats only protein. J. Cell Sci. 129, 1031–1045 (2016).
doi: 10.1242/jcs.177386
pubmed: 26769898
pmcid: 26769898
Hu, G. et al. Transcriptional profiling of growth perturbations of the human malaria parasite Plasmodium falciparum. Nat. Biotechnol. 28, 91 (2009).
doi: 10.1038/nbt.1597
pubmed: 20037583
pmcid: 20037583
Zenonos, Z. A., Rayner, J. C. & Wright, G. J. Towards a comprehensive Plasmodium falciparum merozoite cell surface and secreted recombinant protein library. Malar. J. 13, 93, https://doi.org/10.1186/1475-2875-13-93 (2014).
doi: 10.1186/1475-2875-13-93
pubmed: 24620899
pmcid: 24620899
Suarez, C. et al. A lipid-binding protein mediates rhoptry discharge and invasion in Plasmodium falciparum and Toxoplasma gondii parasites. Nat. Commun. 10, 4041 (2019).
doi: 10.1038/s41467-019-11979-z
pubmed: 31492901
pmcid: 31492901
Birnbaum, J. et al. A genetic system to study Plasmodium falciparum protein function. Nat. Methods 14, 450 (2017).
doi: 10.1038/nmeth.4223
pubmed: 28288121
pmcid: 28288121
Prommana, P. et al. Inducible Knockdown of Plasmodium Gene expression using the glmS ribozyme. PLoS ONE 8, e73783 (2013).
doi: 10.1371/journal.pone.0073783
pubmed: 24023691
pmcid: 24023691
Lopez-Barragan, M. J. et al. Directional gene expression and antisense transcripts in sexual and asexual stages of Plasmodium falciparum. BMC Genomics 12, 587 (2011).
doi: 10.1186/1471-2164-12-587
pubmed: 22129310
pmcid: 22129310
Wilson, D. W., Crabb, B. S. & Beeson, J. G. Development of fluorescent Plasmodium falciparum for in vitro growth inhibition assays. Malar. J. 9, 152 (2010).
doi: 10.1186/1475-2875-9-152
pubmed: 20525251
pmcid: 20525251
Wilson, D. W., Langer, C., Goodman, C. D., McFadden, G. I. & Beeson, J. G. Defining the timing of action of antimalarial drugs against Plasmodium falciparum. Antimicrobial Agents Chemother. 57, 1455–1467 (2013).
doi: 10.1128/AAC.01881-12
Ficz, G. & Heintzmann, R. Breaking the resolution limit in light microscopy. Brief. Funct. Genomics 5, 289–301 (2006).
doi: 10.1093/bfgp/ell036
Bannister, L. H., Hopkins, J. M., Fowler, R. E., Krishna, S. & Mitchell, G. H. Ultrastructure of rhoptry development in Plasmodium falciparum erythrocytic schizonts. Parasitology 121, 273–287 (2000).
doi: 10.1017/S0031182099006320
pubmed: 11085247
pmcid: 11085247
Peskan, T., Westermann, M., Fau—Oelmuller, R. & Oelmuller, R. Identification of low-density Triton X-100-insoluble plasma membrane microdomains in higher plants. Eur. J. Biochem. 267(24), 6989–95 (2000).
doi: 10.1046/j.1432-1327.2000.01776.x
pubmed: 11106408
pmcid: 11106408
Kübler, E., Dohlman, H. G. & Lisanti, M. P. Identification of Triton X-100 insoluble membrane domains in the Yeast Saccharomyces cerevisiae: lipid requirements for targeting of heterotrimeric G-protein subunits. J. Biol. Chem. 271, 32975–32980 (1996).
doi: 10.1074/jbc.271.51.32975
pubmed: 8955141
pmcid: 8955141
Taylor, H. M. et al. The malaria parasite cyclic GMP-dependent protein kinase plays a central role in blood-stage schizogony. Eukaryot. Cell 9, 37 (2010).
doi: 10.1128/EC.00186-09
pubmed: 19915077
pmcid: 19915077
Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845 (2015).
doi: 10.1038/nprot.2015.053
pubmed: 25950237
pmcid: 25950237
Roy, A., Kucukural, A. & Zhang, Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat. Protoc. 5, 725 (2010).
doi: 10.1038/nprot.2010.5
pubmed: 20360767
pmcid: 20360767
Yang, J. et al. The I-TASSER Suite: protein structure and function prediction. Nat. Methods 12, 7 (2014).
doi: 10.1038/nmeth.3213
Zhang, Y. I-TASSER server for protein 3D structure prediction. BMC Bioinforma. 9, 40 (2008).
doi: 10.1186/1471-2105-9-40
Roy, A., Yang, J. & Zhang, Y. Protein–ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment. Bioinformatics 29, 2588–2595 (2013).
doi: 10.1093/bioinformatics/btt447
pubmed: 23975762
pmcid: 23975762
Yang, J., Roy, A. & Zhang, Y. BioLiP: a semi-manually curated database for biologically relevant ligand–protein interactions. Nucleic Acids Res. 41, D1096–D1103 (2012).
doi: 10.1093/nar/gks966
pubmed: 23087378
pmcid: 23087378
Corbalan-Garcia, S. & Gómez-Fernández, J. C. Signaling through C2 domains: more than one lipid target. Biochimica et. Biophysica Acta 1838, 1536–1547 (2014).
doi: 10.1016/j.bbamem.2014.01.008
pubmed: 24440424
pmcid: 24440424
Liu, Y.-C. The E3 ubiquitin ligase Itch in T cell activation, differentiation, and tolerance. Semin. Immunol. 19, 197–205 (2007).
doi: 10.1016/j.smim.2007.02.003
pubmed: 17433711
pmcid: 17433711
Rodriguez, L. et al. C2-domain abscisic acid-related proteins mediate the interaction of PYR/PYL/RCAR abscisic acid receptors with the plasma membrane and regulate abscisic acid sensitivity in Arabidopsis. Plant Cell 26, 4802 (2014).
doi: 10.1105/tpc.114.129973
pubmed: 4311195
pmcid: 4311195
Diaz, M. et al. Calcium-dependent oligomerization of CAR proteins at cell membrane modulates ABA signaling. Proc. Natl Acad. Sci. USA 113, E396 (2016).
doi: 10.1073/pnas.1512779113
pubmed: 26719420
pmcid: 26719420
Czech, M. P. PIP2 and PIP3: complex roles at the cell surface. Cell 100, 603–606 (2000).
doi: 10.1016/S0092-8674(00)80696-0
pubmed: 10761925
pmcid: 10761925
Wang, X., Hills, L. B. & Huang, Y. H. Lipid and protein co-regulation of PI3K effectors Akt and Itk in lymphocytes. Front. Immunol. 6, 117–117 (2015).
pubmed: 25821452
pmcid: 25821452
Jones, M. L., Collins, M. O., Goulding, D., Choudhary, J. S. & Rayner, J. C. Analysis of protein palmitoylation reveals a pervasive role in Plasmodium development and pathogenesis. Cell Host Microbe 12, 246–258 (2012).
doi: 10.1016/j.chom.2012.06.005
pubmed: 22901544
pmcid: 22901544
Deponte, M. et al. Wherever I may roam: protein and membrane trafficking in P. falciparum-infected red blood cells. Mol. Biochemical Parasitol. 186, 95–116 (2012).
doi: 10.1016/j.molbiopara.2012.09.007
Aurrecoechea, C. et al. PlasmoDB: a functional genomic database for malaria parasites. Nucleic Acids Res. 37, D539–D543 (2008).
Dyrløv Bendtsen, J., Nielsen, H., von Heijne, G. & Brunak, S. Improved prediction of signal peptides: signalP 3.0. J. Mol. Biol. 340, 783–795 (2004).
doi: 10.1016/j.jmb.2004.05.028
Almagro Armenteros, J. J. et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 37, 420–423 (2019).
doi: 10.1038/s41587-019-0036-z
pubmed: 30778233
pmcid: 30778233
Silmon de Monerri, N. C. et al. Global identification of multiple substrates for Plasmodium falciparum SUB1, an essential malarial processing protease. Infect. Immun. 79, 1086–1097 (2011).
doi: 10.1128/IAI.00902-10
pubmed: 21220481
pmcid: 21220481
Howard, R. F., Narum, D. L., Blackman, M. & Thurman, J. Analysis of the processing of Plasmodium falciparum rhoptry-associated protein 1 and localization of Pr86 to schizont rhoptries and p67 to free merozoites. Mol. Biochemical Parasitol. 92, 111–122 (1998).
doi: 10.1016/S0166-6851(97)00238-7
Nasamu, A. S. et al. Plasmepsins IX and X are essential and druggable mediators of malaria parasite egress and invasion. Science 358, 518 (2017).
doi: 10.1126/science.aan1478
pubmed: 29074774
pmcid: 29074774
Schofield, L. et al. A rhoptry antigen of Plasmodium falciparum contains conserved and variable epitopes recognized by inhibitory monoclonal antibodies. Mol. Biochemical Parasitol. 18, 183–195 (1986).
doi: 10.1016/0166-6851(86)90037-X
Bushell, G. R., Ingram, L. T., Fardoulys, C. A. & Cooper, J. A. An antigenic complex in the rhoptries of Plasmodium falciparum. Mol. Biochemical Parasitol. 28, 105–112 (1988).
doi: 10.1016/0166-6851(88)90057-6
Dearnley, M. K. et al. Origin, composition, organization and function of the inner membrane complex of Plasmodium falciparum gametocytes. J. Cell Sci. 125, 2053 (2012).
doi: 10.1242/jcs.099002
pubmed: 22328505
pmcid: 22328505
Pinder, J. C. et al. Actomyosin motor in the merozoite of the malaria parasite, Plasmodium falciparum: implications for red cell invasion. J. Cell Sci. 111, 1831 (1998).
pubmed: 9625746
pmcid: 9625746
Parkyn Schneider, M. et al. Disrupting assembly of the inner membrane complex blocks Plasmodium falciparum sexual stage development. PLOS Pathog. 13, e1006659 (2017).
doi: 10.1371/journal.ppat.1006659
pubmed: 28985225
pmcid: 28985225
Cho, W. & Stahelin, R. V. Membrane-protein interactions in cell signaling and membrane trafficking. Annu. Rev. Biophy. Biomol. Struct. 34, 119–151 (2005).
doi: 10.1146/annurev.biophys.33.110502.133337
Zhang, M. et al. Uncovering the essential genes of the human malaria parasite Plasmodium falciparum by saturation mutagenesis. Science 360, eaap7847 (2018).
doi: 10.1126/science.aap7847
pubmed: 29724925
pmcid: 29724925
Gao, Y. H. et al. Identification of a vaccine candidate antigen, PfMAg-1, from Plasmodium falciparum with monoclonal antibody M26-32. Parasitol. Res. 105, 1723–1732 (2009).
doi: 10.1007/s00436-009-1617-4
pubmed: 19777263
pmcid: 19777263
Volz, J. C. et al. Essential role of the PfRh5/PfRipr/CyRPA complex during Plasmodium falciparum Invasion of erythrocytes. Cell Host Microbe 20(1), 60–71 (2016).
doi: 10.1016/j.chom.2016.06.004
pubmed: 27374406
pmcid: 27374406
Trager, W. & Jensen, J. B. Human malaria parasites in continuous culture. Science 193, 673 (1976).
doi: 10.1126/science.781840
pubmed: 781840
pmcid: 781840
Elsworth, B. et al. PTEX is an essential nexus for protein export in malaria parasites. Nature 511, 587–591 (2014).
doi: 10.1038/nature13555
pubmed: 25043043
pmcid: 25043043
Treeck, M. et al. A conserved region in the EBL proteins is implicated in microneme targeting of the malaria parasite Plasmodium falciparum. J. Biol. Chem. 281, 31995–32003 (2006).
doi: 10.1074/jbc.M606717200
pubmed: 16935855
pmcid: 16935855
Deitsch, K., Driskill, C. & Wellems, T. Transformation of malaria parasites by the spontaneous uptake and expression of DNA from human erythrocytes. Nucleic Acids Res. 29, 850–853 (2001).
doi: 10.1093/nar/29.3.850
pubmed: 11160909
pmcid: 11160909
Boyle, M. J. et al. Isolation of viable Plasmodium falciparum merozoites to define erythrocyte invasion events and advance vaccine and drug development. Proc. Natl Acad. Sci. USA 107, 14378 (2010).
doi: 10.1073/pnas.1009198107
pubmed: 20660744
pmcid: 20660744
Bullen, H. E. et al. Biosynthesis, localization, and macromolecular arrangement of the Plasmodium falciparum translocon of exported proteins (PTEX). J. Biol. Chem. 287, 7871–7884 (2012).
doi: 10.1074/jbc.M111.328591
pubmed: 22253438
pmcid: 22253438
Baum, J. et al. A conserved molecular motor drives cell invasion and gliding motility across malaria life cycle stages and other apicomplexan parasites. J. Biol. Chem. 281, 5197–5208 (2006).
doi: 10.1074/jbc.M509807200
pubmed: 16321976
pmcid: 16321976
Lopaticki, S. et al. Reticulocyte and erythrocyte binding-like proteins function cooperatively in invasion of human erythrocytes by malaria parasites. Infect. Immun. 79, 1107 (2011).
doi: 10.1128/IAI.01021-10
pubmed: 21149582
pmcid: 21149582
Tham, W.-H. et al. Complement receptor 1 is the host erythrocyte receptor for Plasmodium falciparum PfRh4 invasion ligand. Proc. Natl Acad. Sci. USA 107, 17327 (2010).
doi: 10.1073/pnas.1008151107
pubmed: 20855594
pmcid: 20855594
Albano, F. R. et al. A homologue of Sar1p localises to a novel trafficking pathway in malaria-infected erythrocytes. Eur. J. Cell Biol. 78, 453–462 (1999).
doi: 10.1016/S0171-9335(99)80072-7
pubmed: 10472798
pmcid: 10472798
Chen, L. et al. Structural basis for inhibition of erythrocyte invasion by antibodies to Plasmodium falciparum protein CyRPA. eLife 6, e21347 (2017).
doi: 10.7554/eLife.21347
pubmed: 28195530
pmcid: 28195530
Gilson, P. R. et al. MSP119 miniproteins can serve as targets for invasion inhibitory antibodies in Plasmodium falciparum provided they contain the correct domains for cell surface trafficking. Mol. Microbiol. 68, 124–138 (2008).
doi: 10.1111/j.1365-2958.2008.06140.x
pubmed: 18333885
pmcid: 18333885
Absalon, S., Robbins, J. A. & Dvorin, J. D. An essential malaria protein defines the architecture of blood-stage and transmission-stage parasites. Nat. Commun. 7, 11449 (2016).
doi: 10.1038/ncomms11449
pubmed: 27121004
pmcid: 27121004