Normobaric hypoxia does not alter the critical environmental limits for thermal balance during exercise-heat stress.
Adult
Body Temperature
/ physiology
Body Temperature Regulation
/ physiology
Exercise
/ physiology
Female
Heat Stress Disorders
/ physiopathology
Heat-Shock Response
/ physiology
Hot Temperature
/ adverse effects
Humans
Hypoxia
/ physiopathology
Male
Regional Blood Flow
/ physiology
Sweating
/ physiology
hypoxaemia
skin blood flow
sweating
thermoregulation
Journal
Experimental physiology
ISSN: 1469-445X
Titre abrégé: Exp Physiol
Pays: England
ID NLM: 9002940
Informations de publication
Date de publication:
01 2021
01 2021
Historique:
received:
20
01
2020
accepted:
18
03
2020
pubmed:
20
3
2020
medline:
22
2
2022
entrez:
20
3
2020
Statut:
ppublish
Résumé
What is the central question of this study? Hypoxia reportedly does not impair thermoregulation during exercise in compensable heat stress conditions: does it have an impact on maximal heat dissipation and therefore the critical environmental limit for the physiological compensability of core temperature? What is the main finding and its importance? Although skin blood flow was higher in hypoxia, no differences in sweat rates or the critical environmental limit for the physiological compensability of core temperature - an indicator of maximal heat loss - were found compared to exercise in normoxia, indicating no influence of normobaric hypoxia on thermoregulatory capacity in warm conditions. Altered control of skin blood flow (SkBF) in hypoxia does not impair thermoregulation during exercise in compensable conditions, but its impact on maximal heat dissipation is unknown. This study therefore sought to determine whether maximum heat loss is altered by hypoxia during exercise in warm conditions. On separate days, eight males exercised for 90 min at a fixed heat production of ∼500 W in normoxia (NORM) or normobaric hypoxia (HYP,
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
359-369Informations de copyright
© 2020 The Authors. Experimental Physiology © 2020 The Physiological Society.
Références
Black, J. E., & Roddie, I. C. (1958). The mechanism of the changes in forearm vascular resistance during hypoxia. Journal of Physiology, 143, 226-235.
Bradbury, K. E., Coffman, K. E., Mitchell, K. M., Luippold, A. J., Fulco, C. S., & Kenefick, R. W. (2019). Separate and combined influences of heat and hypobaric hypoxia on self-paced aerobic exercise performance. Journal of Applied Physiology, 127, 513-519.
Brocherie, F., Girard, O., Faiss, R., & Millet, G. P. (2017). Effects of repeated-sprint training in hypoxia on sea-level performance: A meta-analysis. Sports Medicine, 47, 1651-1660.
Cain, J. B., Livingstone, S. D., Nolan, R. W., & Keefe, A. A. (1990). Respiratory heat loss during work at various ambient temperatures. Respiration Physiology, 79, 145-150.
Casey, D. P., & Joyner, M. J. (2012). Compensatory vasodilatation during hypoxic exercise: Mechanisms responsible for matching oxygen supply to demand. Journal of Physiology, 590, 6321-6326.
Charkoudian, N., Mitchell, K. M., Yurkevicius, B. R., Luippold, A. J., Bradbury, K. E., & Kenefick, R. W. (2019). Influences of hypobaric hypoxia on skin blood flow and sweating responses during exercise in neutral and hot environments. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 317, R571-R575.
Chaseling, G. K., Crandall, C. G., & Gagnon, D. (2019). Skin blood flow measurements during heat stress: Technical and analytical considerations. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 318, R57-R69.
Coombs, G. B., Cramer, M. N., Ravanelli, N., Imbeault, P., & Jay, O. (2017). Thermoregulatory responses to exercise at a fixed rate of heat production are not altered by acute hypoxia. Journal of Applied Physiology, 122, 1198-1207.
Cramer, M. N., Gagnon, D., Crandall, C. G., & Jay, O. (2017). Does attenuated skin blood flow lower sweat rate and the critical environmental limit for heat balance during severe heat exposure? Experimental Physiology, 102, 202-213.
Cramer, M. N., & Jay, O. (2014). Selecting the correct exercise intensity for unbiased comparisons of thermoregulatory responses between groups of different mass and surface area. Journal of Applied Physiology, 116, 1123-1132.
Cramer, M. N., & Jay, O. (2018). Partitional calorimetry. Journal of Applied Physiology, 126, 267-277.
CSEP (1986). Certified Fitness Appraiser Resource Manual. Ottawa: Canadian Society for Exercise Physiology.
Detry, J. M., Brengelmann, G. L., Rowell, L. B., & Wyss, C. (1972). Skin and muscle components of forearm blood flow in directly heated resting man. Journal of Applied Physiology, 32, 506-511.
DiPasquale, D. M., Kolkhorst, F. W., & Buono, M. J. (2015). Acute normobaric hypoxia reduces body temperature in humans. High Altitude Medicine & Biology, 16, 61-66.
Ely, B. R., Lovering, A. T., Horowitz, M., & Minson, C. T. (2014). Heat acclimation and cross tolerance to hypoxia. Temperature, 1, 107-114.
Faul, F., Erdfelder, E., Lang, A-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39, 175-191.
Gagnon, D., Jay, O., & Kenny, G. P. (2013). The evaporative requirement for heat balance determines whole-body sweat rate during exercise under conditions permitting full evaporation. Journal of Physiology, 591, 2925-2935.
Gagnon, D., Lemire, B. B., Jay, O., & Kenny, G. P. (2010). Aural canal, esophageal, and rectal temperatures during exertional heat stress and the subsequent recovery period. Journal of Athletic Training, 45, 157-163.
Gibson, O. R., Taylor, L., Watt, P. W., & Maxwell, N. S. (2017). Cross-adaptation: Heat and cold adaptation to improve physiological and cellular responses to hypoxia. Sports Medicine, 47, 1751-1768.
Gibson, O. R., Turner, G., Tuttle, J. A., Taylor, L., Watt, P. W., & Maxwell, N. S. (2015). Heat acclimation attenuates physiological strain and the HSP72, but not HSP90α, mRNA response to acute normobaric hypoxia. Journal of Applied Physiology, 119, 889-899.
Girard, O., & Racinais, S. (2014). Combining heat stress and moderate hypoxia reduces cycling time to exhaustion without modifying neuromuscular fatigue characteristics. European Journal of Applied Physiology, 114, 1521-1532.
Gladwin, M. T., Raat, N. J. H., Shiva, S., Dezfulian, C., Hogg, N., Kim-Shapiro, D. B., & Patel, R. P. (2006). Nitrite as a vascular endocrine nitric oxide reservoir that contributes to hypoxic signaling, cytoprotection, and vasodilation. American Journal of Physiology. Heart and Circulatory Physiology, 291, H2026-H2035.
Graham, C., Morris, N. B., Harwood, A. E., & Jay, O. (2020). Ad libitum water consumption off-sets the thermal and cardiovascular strain exacerbated by dehydration during a 3-h simulated heatwave. European Journal of Applied Physiology, 120, 391-399.
Greenleaf, J. E., Greenleaf, J., Card, D. H., & Saltin, B. (1969). Exercise-temperature regulation in man during acute exposure to simulated altitude. Journal of Applied Physiology, 26, 290-296.
Hanson, R de G. (1974). Respiratory heat loss at increased core temperature. Journal of Applied Physiology, 37, 103-107.
Heinonen, I., Brothers, R. M., Kemppainen, J., Knuuti, J., Kalliokoski, K. K., & Crandall, C. G. (2011). Local heating, but not indirect whole body heating, increases human skeletal muscle blood flow. Journal of Applied Physiology, 111, 818-824.
Hoeschen Robert, J., Gold Lawrence, H. A., Cuddy Thomas, E., & Cherniack Reuben, M. (1962). Oxygen cost and efficiency of respiratory system in hypoxia and in congestive heart failure. Circulation Research, 11, 825-831.
Horiuchi, M., Fukuoka, Y., Handa, Y., Abe, D., & Pontzer, H. (2017). Measuring the energy of ventilation and circulation during human walking using induced hypoxia. Scientific Reports, 7, 4938.
Ikegawa, S., Kamijo, Y., Okazaki, K., Masuki, S., Okada, Y., & Nose, H. (2011). Effects of hypohydration on thermoregulation during exercise before and after 5-day aerobic training in a warm environment in young men. Journal of Applied Physiology, 110, 972-980.
Kamon, E., & Belding, H. S. (1971). Heart rate and rectal temperature relationships during work in hot humid environments. Journal of Applied Physiology, 31, 472-477.
Kenney, W. L., & Zeman, M. J. (2002). Psychrometric limits and critical evaporative coefficients for unacclimated men and women. Journal of Applied Physiology, 92, 2256-2263.
Kerslake, D. M. (1972). The Stress of Hot Environments. Monographs of The Physiological Society 29. Cambridge: Cambridge University Press.
Kolka, M. A., Stephenson, L. A., & Gonzalez, R. R. (1989). Depressed sweating during exercise at altitude. Journal of Thermal Biology, 14, 167-170.
Kolka, M. A., Stephenson, L. A., Rock, P. B., & Gonzalez, R. R. (1987). Local sweating and cutaneous blood flow during exercise in hypobaric environments. Journal of Applied Physiology, 62, 2224-2229.
Lawley, J. S., Oliver, S. J., Mullins, P. G., Macdonald, J. H., & Moore, J. P. (2014). Prolonged (9 h) poikilocapnic hypoxia (12% O2) augments cutaneous thermal hyperaemia in healthy humans. Experimental Physiology, 99, 909-920.
Lorenzo, S., Halliwill, J. R., Sawka, M. N., & Minson, C. T. (2010). Heat acclimation improves exercise performance. Journal of Applied Physiology, 109, 1140-1147.
Low, D. A., Bailey, T. G., Cable, N. T., & Jones, H. (2016). Thermoregulatory responses to combined moderate heat stress and hypoxia. Microcirculation, 23, 487-494.
Mekjavic, I. B., & Rempel, M. E. (1990). Determination of esophageal probe insertion length based on standing and sitting height. Journal of Applied Physiology, 69, 376-379.
Mitchell, J. W., Nadel, E. R., & Stolwijk, J. A. (1972). Respiratory weight losses during exercise. Journal of Applied Physiology, 32, 474-476.
Miyagawa, K., Kamijo, Y.-I., Ikegawa, S., Goto, M., & Nose, H. (2010). Reduced hyperthermia-induced cutaneous vasodilation and enhanced exercise-induced plasma water loss at simulated high altitude (3,200 m) in humans. Journal of Applied Physiology, 110, 157-165.
Paparde, A., Plakane, L., Circenis, K., & Aivars, J. I. (2015). Effect of acute systemic hypoxia on human cutaneous microcirculation and endothelial, sympathetic and myogenic activity. Microvascular Research, 102, 1-5.
Parsons, K. (2014). Human Thermal Environments: The Effects of Hot, Moderate, and Cold Environments on Human Health, Comfort, and Performance (3rd edn). New York: Taylor & Francis.
Périard, J. D., Racinais, S., & Sawka, M. N. (2015). Adaptations and mechanisms of human heat acclimation: Applications for competitive athletes and sports. Scandinavian Journal of Medicine & Science in Sports, 25, 20-38.
Ramanathan, N. L. (1964). A new weighting system for mean surface temperature of the human body. Journal of Applied Physiology, 19, 531-533.
Ravanelli, N. M., Hodder, S. G., Havenith, G., & Jay, O. (2015). Heart rate and body temperature responses to extreme heat and humidity with and without electric fans. JAMA, 313, 724-725.
Razminia, M., Trivedi, A., Molnar, J., Elbzour, M., Guerrero, M., Salem, Y., … Lubell, D. L. (2004). Validation of a new formula for mean arterial pressure calculation: The new formula is superior to the standard formula. Catheterization and Cardiovascular Interventions, 63, 419-425.
Rendell, R. A., Prout, J., Costello, J. T., Massey, H. C., Tipton, M. J., Young, J. S., & Corbett, J. (2017). Effects of 10 days of separate heat and hypoxic exposure on heat acclimation and temperate exercise performance. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 313, R191-R201.
Rowell, L. B., Freund, P. R., & Brengelmann, G. L. (1982). Cutaneous vascular response to exercise and acute hypoxia. Journal of Applied Physiology, 53, 920-924.
Sagawa, S., Shiraki, K., & Konda, N. (1986). Cutaneous vascular responses to heat simulated at a high altitude of 5,600 m. Journal of Applied Physiology, 60, 1150-1154.
Sanchez, A. M. J., & Borrani, F. (2018). Effects of intermittent hypoxic training performed at high hypoxia level on exercise performance in highly trained runners. Journal of Sports Sciences, 36, 2045-2052.
Simmons, G. H., Minson, C. T., Cracowski, J-L., & Halliwill, J. R. (2007). Systemic hypoxia causes cutaneous vasodilation in healthy humans. Journal of Applied Physiology, 103, 608-615.
Sotiridis, A., Debevec, T., Ciuha, U., Eiken, O., & Mekjavic, I. B. (2019a). Heat acclimation does not affect maximal aerobic power in thermoneutral normoxic or hypoxic conditions. Experimental Physiology, 104, 345-358.
Sotiridis, A., Debevec, T., McDonnell, A. C., Ciuha, U., Eiken, O., & Mekjavic, I. B. (2018). Exercise cardiorespiratory and thermoregulatory responses in normoxic, hypoxic, and hot environment following 10-day continuous hypoxic exposure. Journal of Applied Physiology, 125, 1284-1295.
Sotiridis, A., Miliotis, P., Ciuha, U., Koskolou, M., & Mekjavic, I. B. (2019b). No ergogenic effects of a 10-day combined heat and hypoxic acclimation on aerobic performance in normoxic thermoneutral or hot conditions. European Journal of Applied Physiology, 119, 2513-2527.
Stray-Gundersen, J., & Levine, B. D. (2008). Live high, train low at natural altitude. Scandinavian Journal of Medicine & Science in Sports, 18, 21-28.
Treml, B., Kleinsasser, A., Stadlbauer, K-H., Steiner, I., Pajk, W., Pilch, M., … Knotzer, H. (2018). Cutaneous microvascular blood flow and reactivity in hypoxia. Frontiers in Physiology, 9, 160.
White, A. C., Salgado, R. M., Astorino, T. A., Loeppky, J. A., Schneider, S. M., McCormick, J. J., … Mermier, C. M. (2016). The effect of 10 days of heat acclimation on exercise performance in acute hypobaric hypoxia (4350 m). Temperature, 3, 176-185.
Wingo, J. E., Low, D. A., Keller, D. M., Brothers, R. M., Shibasaki, M., & Crandall, C. G. (2010). Skin blood flow and local temperature independently modify sweat rate during passive heat stress in humans. Journal of Applied Physiology, 109, 1301-1306.