Microplastics generated when opening plastic packaging.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
19 03 2020
Historique:
received: 04 12 2019
accepted: 18 02 2020
entrez: 21 3 2020
pubmed: 21 3 2020
medline: 21 3 2020
Statut: epublish

Résumé

Millions of tonnes of plastics have been released into the environment. Although the risk of plastics to humans is not yet resolved, microplastics, in the range of 1 μm - 5 mm, have entered our bodies, originating either from ingestion via the food chain or from inhalation of air. Generally there are two sources of microplastics, either directly from industry, such as cosmetic exfoliants, or indirectly from physical, chemical and biological fragmentation of large (>5 mm) plastic residues. We have found that microplastics can be generated by simple tasks in our daily lives such as by scissoring with scissors, tearing with hands, cutting with knives or twisting manually, to open plastics containers/bags/tapes/caps. These processes can generate about 0.46-250 microplastic/cm. This amount is dependent on the conditions such as stiffness, thickness, anisotropy, the density of plastic materials and the size of microplastics.This finding sends an important warning, that we must be careful when opening plastic packaging, if we are concerned about microplastics and care about reducing microplastics contamination.

Identifiants

pubmed: 32193409
doi: 10.1038/s41598-020-61146-4
pii: 10.1038/s41598-020-61146-4
pmc: PMC7082338
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

4841

Références

Hartmann, N. B., Skjolding, L. M., Nolte, T. & Baun, A. In SETAC Europe 26th Annual Meeting. 43-44 (SETAC Europe).
Ng, E.-L. et al. An overview of microplastic and nanoplastic pollution in agroecosystems. Science of The Total Environment 627, 1377–1388, https://doi.org/10.1016/j.scitotenv.2018.01.341 (2018).
doi: 10.1016/j.scitotenv.2018.01.341 pubmed: 30857101
Jiang, J.-Q. Occurrence of microplastics and its pollution in the environment: A review. Sustainable Production and Consumption 13, 16–23, https://doi.org/10.1016/j.spc.2017.11.003 (2018).
doi: 10.1016/j.spc.2017.11.003
Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Science Advances 3, e1700782, https://doi.org/10.1126/sciadv.1700782 (2017).
doi: 10.1126/sciadv.1700782 pubmed: 28776036 pmcid: 5517107
Bergmann, M. et al. White and wonderful? Microplastics prevail in snow from the Alps to the Arctic. Science Advances 5, eaax1157, https://doi.org/10.1126/sciadv.aax1157 (2019).
doi: 10.1126/sciadv.aax1157 pubmed: 31453336 pmcid: 6693909
Eriksen, M. et al. Plastic Pollution in the World’s Oceans: More than 5 Trillion Plastic Pieces Weighing over 250,000 Tons Afloat at Sea. PLoS One 9, e111913, https://doi.org/10.1371/journal.pone.0111913 (2014).
doi: 10.1371/journal.pone.0111913 pubmed: 25494041 pmcid: 4262196
Wright, S. L. & Kelly, F. J. Plastic and Human Health: A Micro Issue? Environmental Science & Technology 51, 6634–6647, https://doi.org/10.1021/acs.est.7b00423 (2017).
doi: 10.1021/acs.est.7b00423
Schwabl, P. et al. Detection of Various Microplastics in Human Stool: A Prospective Case Series. Annals of Internal Medicine 171, 453–457, https://doi.org/10.7326/M19-0618 (2019).
doi: 10.7326/M19-0618
Catarino, A. I., Macchia, V., Sanderson, W. G., Thompson, R. C. & Henry, T. B. Low levels of microplastics (MP) in wild mussels indicate that MP ingestion by humans is minimal compared to exposure via household fibres fallout during a meal. Environmental Pollution 237, 675–684 (2018).
doi: 10.1016/j.envpol.2018.02.069
Cox, K. D. et al. Human Consumption of Microplastics. Environmental Science & Technology 53, 7068–7074, https://doi.org/10.1021/acs.est.9b01517 (2019).
doi: 10.1021/acs.est.9b01517
Mason, S. A., Welch, V. G. & Neratko, J. Synthetic polymer contamination in bottled water. Frontiers in Chemistry 6 (2018).
Kosuth, M., Mason, S. A. & Wattenberg, E. V. Anthropogenic contamination of tap water, beer, and sea salt. PLoS One 13, e0194970 (2018).
doi: 10.1371/journal.pone.0194970
Liebezeit, G. & Liebezeit, E. Synthetic particles as contaminants in German beers. Food Additives & Contaminants: Part A 31, 1574–1578, https://doi.org/10.1080/19440049.2014.945099 (2014).
doi: 10.1080/19440049.2014.945099
Klein, M. & Fischer, E. K. Microplastic abundance in atmospheric deposition within the Metropolitan area of Hamburg, Germany. Science of The Total Environment 685, 96–103, https://doi.org/10.1016/j.scitotenv.2019.05.405 (2019).
doi: 10.1016/j.scitotenv.2019.05.405 pubmed: 31174127
Dris, R. et al. A first overview of textile fibers, including microplastics, in indoor and outdoor environments. Environmental Pollution 221, 453–458, https://doi.org/10.1016/j.envpol.2016.12.013 (2017).
doi: 10.1016/j.envpol.2016.12.013 pubmed: 27989388
Gregory, M. R. Environmental implications of plastic debris in marine settings–entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions. Philosophical transactions of the Royal Society of London. Series B, Biological sciences 364, 2013–2025, https://doi.org/10.1098/rstb.2008.0265 (2009).
doi: 10.1098/rstb.2008.0265 pubmed: 19528053 pmcid: 2873013
Karami, A. et al. The presence of microplastics in commercial salts from different countries. Scientific Reports 7, 46173, https://doi.org/10.1038/srep46173 (2017).
doi: 10.1038/srep46173 pubmed: 28383020 pmcid: 5382780
Eriksen, M. et al. Microplastic pollution in the surface waters of the Laurentian Great Lakes. Marine Pollution Bulletin 77, 177–182, https://doi.org/10.1016/j.marpolbul.2013.10.007 (2013).
doi: 10.1016/j.marpolbul.2013.10.007 pubmed: 24449922
Kim, J.-S., Lee, H.-J., Kim, S.-K. & Kim, H.-J. Global Pattern of Microplastics (MPs) in Commercial Food-Grade Salts: Sea Salt as an Indicator of Seawater MP Pollution. Environmental Science & Technology 52, 12819–12828, https://doi.org/10.1021/acs.est.8b04180 (2018).
doi: 10.1021/acs.est.8b04180
Lee, H., Kunz, A., Shim, W. J. & Walther, B. A. Microplastic contamination of table salts from Taiwan, including a global review. Scientific Reports 9, 10145, https://doi.org/10.1038/s41598-019-46417-z (2019).
doi: 10.1038/s41598-019-46417-z pubmed: 31300670 pmcid: 6626012
Mahvash, M. et al. Modeling the Forces of Cutting With Scissors. IEEE Transactions on Biomedical Engineering 55, 848–856, https://doi.org/10.1109/TBME.2007.908069 (2008).
doi: 10.1109/TBME.2007.908069 pubmed: 18334376
Burdett, C., Theakston, M., Dunning, J., Goodwin, A. & Kendall, S. W. H. Left-handed surgical instruments – a guide for cardiac surgeons. Journal of Cardiothoracic Surgery 11, 135, https://doi.org/10.1186/s13019-016-0497-9 (2016).
doi: 10.1186/s13019-016-0497-9 pubmed: 27542837 pmcid: 4992330
O’Keefe, R. Modeling the tearing of paper. American Journal of Physics 62, 299–305, https://doi.org/10.1119/1.17570 (1994).
doi: 10.1119/1.17570
Sobhani, Z., Al Amin, M., Naidu, R., Megharaj, M. & Fang, C. Identification and visualisation of microplastics by Raman mapping. Analytica Chimica Acta 1077, 191–199, https://doi.org/10.1016/j.aca.2019.05.021 (2019).
doi: 10.1016/j.aca.2019.05.021 pubmed: 31307709
Oßmann, B. E. et al. Small-sized microplastics and pigmented particles in bottled mineral water. Water Research 141, 307–316, https://doi.org/10.1016/j.watres.2018.05.027 (2018).
doi: 10.1016/j.watres.2018.05.027 pubmed: 29803096
Arnau, A., Montagut, Y., García, J. V. & Jiménez, Y. A different point of view on the sensitivity of quartz crystal microbalance sensors. Measurement Science and Technology 20, 124004 (2009).
doi: 10.1088/0957-0233/20/12/124004
Tsai, W.-Y., Taberna, P.-L. & Simon, P. Electrochemical Quartz Crystal Microbalance (EQCM) Study of Ion Dynamics in Nanoporous Carbons. Journal of the American Chemical Society 136, 8722–8728, https://doi.org/10.1021/ja503449w (2014).
doi: 10.1021/ja503449w pubmed: 24869895

Auteurs

Zahra Sobhani (Z)

Global Centre for Environmental Remediation, University of Newcastle, Newcastle, 2308, Australia.

Yongjia Lei (Y)

Global Centre for Environmental Remediation, University of Newcastle, Newcastle, 2308, Australia.
State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.

Youhong Tang (Y)

Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, 5042, Australia.

Liwei Wu (L)

Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, 5042, Australia.
School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China.

Xian Zhang (X)

Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.

Ravi Naidu (R)

Global Centre for Environmental Remediation, University of Newcastle, Newcastle, 2308, Australia.
Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, University of Newcastle, Newcastle, 2308, Australia.

Mallavarapu Megharaj (M)

Global Centre for Environmental Remediation, University of Newcastle, Newcastle, 2308, Australia.
Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, University of Newcastle, Newcastle, 2308, Australia.

Cheng Fang (C)

Global Centre for Environmental Remediation, University of Newcastle, Newcastle, 2308, Australia. cheng.fang@newcastle.edu.au.
Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, University of Newcastle, Newcastle, 2308, Australia. cheng.fang@newcastle.edu.au.

Classifications MeSH