Excitatory VTA to DH projections provide a valence signal to memory circuits.
Animals
Conditioning, Classical
Dentate Gyrus
/ drug effects
Fear
/ physiology
Female
Gene Silencing
/ drug effects
Glutamate Decarboxylase
/ metabolism
Glutamates
/ metabolism
Hippocampus
/ drug effects
Kinetics
Male
Memory
/ drug effects
Mice, Inbred C57BL
Morphine
/ pharmacology
Nerve Net
/ drug effects
Optogenetics
Receptors, N-Methyl-D-Aspartate
/ metabolism
Sex Characteristics
Synaptic Transmission
/ drug effects
Ventral Tegmental Area
/ drug effects
Vesicular Glutamate Transport Protein 2
/ metabolism
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
19 03 2020
19 03 2020
Historique:
received:
30
06
2019
accepted:
11
02
2020
entrez:
21
3
2020
pubmed:
21
3
2020
medline:
16
7
2020
Statut:
epublish
Résumé
The positive or negative value (valence) of past experiences is normally integrated into neuronal circuits that encode episodic memories and plays an important role in guiding behavior. Here, we show, using mouse behavioral models, that glutamatergic afferents from the ventral tegmental area to the dorsal hippocampus (VTA→DH) signal negative valence to memory circuits, leading to the formation of fear-inducing context memories and to context-specific reinstatement of fear. To a lesser extent, these projections also contributed to opioid-induced place preference, suggesting a role in signaling positive valence as well, and thus a lack of dedicated polarity. Manipulations of VTA terminal activity were more effective in females and paralleled by sex differences in glutamatergic signaling. By prioritizing retrieval of negative and positive over neutral memories, the VTA→DH circuit can facilitate the selection of adaptive behaviors when current and past experiences are valence congruent.
Identifiants
pubmed: 32193428
doi: 10.1038/s41467-020-15035-z
pii: 10.1038/s41467-020-15035-z
pmc: PMC7081331
doi:
Substances chimiques
Glutamates
0
Receptors, N-Methyl-D-Aspartate
0
Vesicular Glutamate Transport Protein 2
0
Morphine
76I7G6D29C
Glutamate Decarboxylase
EC 4.1.1.15
glutamate decarboxylase 2
EC 4.1.1.15
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1466Subventions
Organisme : NIDA NIH HHS
ID : P50 DA044121
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH108837
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH078064
Pays : United States
Références
Rolls, E. T. Limbic systems for emotion and for memory, but no single limbic system. Cortex 62, 119–157 (2015).
doi: 10.1016/j.cortex.2013.12.005
pubmed: 24439664
pmcid: 24439664
Robinson, O. J., Charney, D. R., Overstreet, C., Vytal, K. & Grillon, C. The adaptive threat bias in anxiety: amygdala-dorsomedial prefrontal cortex coupling and aversive amplification. Neuroimage 60, 523–529 (2012).
doi: 10.1016/j.neuroimage.2011.11.096
pubmed: 22178453
pmcid: 22178453
Vervliet, B., Craske, M. G. & Hermans, D. Fear extinction and relapse: state of the art. Annu Rev. Clin. Psychol. 9, 215–248 (2013).
doi: 10.1146/annurev-clinpsy-050212-185542
pubmed: 23537484
pmcid: 23537484
Hyman, S. E., Malenka, R. C. & Nestler, E. J. Neural mechanisms of addiction: the role of reward-related learning and memory. Annu. Rev. Neurosci. 29, 565–598 (2006).
doi: 10.1146/annurev.neuro.29.051605.113009
pubmed: 16776597
pmcid: 16776597
Koob, G. F. & Volkow, N. D. Neurocircuitry of addiction. Neuropsychopharmacology 35, 217–238 (2010).
doi: 10.1038/npp.2009.110
McLean, C. P., Asnaani, A., Litz, B. T. & Hofmann, S. G. Gender differences in anxiety disorders: prevalence, course of illness, comorbidity and burden of illness. J. Psychiatr. Res. 45, 1027–1035 (2011).
doi: 10.1016/j.jpsychires.2011.03.006
pubmed: 21439576
pmcid: 21439576
Greenfield, S. F. et al. Substance abuse treatment entry, retention, and outcome in women: a review of the literature. Drug Alcohol Depend. 86, 1–21 (2007).
doi: 10.1016/j.drugalcdep.2006.05.012
Bobzean, S. A., DeNobrega, A. K. & Perrotti, L. I. Sex differences in the neurobiology of drug addiction. Exp. Neurol. 259, 64–74 (2014).
doi: 10.1016/j.expneurol.2014.01.022
Fanselow, M. S. Contextual fear, gestalt memories, and the hippocampus. Behav. Brain Res. 110, 73–81 (2000).
doi: 10.1016/S0166-4328(99)00186-2
Tulving, E. Memory and consciousness. Can. Psychol. 26, 1–12 (1985).
doi: 10.1037/h0080017
Moser, E. I., Moser, M. B. & McNaughton, B. L. Spatial representation in the hippocampal formation: a history. Nat. Neurosci. 20, 1448–1464 (2017).
doi: 10.1038/nn.4653
Heys, J. G., Rangarajan, K. V. & Dombeck, D. A. The functional micro-organization of grid cells revealed by cellular-resolution imaging. Neuron 84, 1079–1090 (2014).
doi: 10.1016/j.neuron.2014.10.048
pubmed: 4360978
pmcid: 4360978
Robinson, N. T. M. et al. Medial entorhinal cortex selectively supports temporal coding by hippocampal neurons. Neuron 94, 677–688.e6 (2017).
doi: 10.1016/j.neuron.2017.04.003
pubmed: 5465388
pmcid: 5465388
Kitamura, T. et al. Island cells control temporal association memory. Science 343, 896–901 (2014).
doi: 10.1126/science.1244634
pubmed: 5572219
pmcid: 5572219
Kitamura, T. et al. Entorhinal cortical ocean cells encode specific contexts and drive context-specific fear memory. Neuron 87, 1317–1331 (2015).
doi: 10.1016/j.neuron.2015.08.036
pubmed: 5094459
pmcid: 5094459
Redondo, R. L. et al. Bidirectional switch of the valence associated with a hippocampal contextual memory engram. Nature 513, 426–430 (2014).
doi: 10.1038/nature13725
pubmed: 4169316
pmcid: 4169316
Fields, H. L., Hjelmstad, G. O., Margolis, E. B. & Nicola, S. M. Ventral tegmental area neurons in learned appetitive behavior and positive reinforcement. Annu. Rev. Neurosci. 30, 289–316 (2007).
doi: 10.1146/annurev.neuro.30.051606.094341
Langlois, L. D. & Nugent, F. S. Opiates and plasticity in the ventral tegmental area. ACS Chem. Neurosci. 8, 1830–1838 (2017).
doi: 10.1021/acschemneuro.7b00281
pubmed: 5775906
pmcid: 5775906
Holly, E. N. & Miczek, K. A. Ventral tegmental area dopamine revisited: effects of acute and repeated stress. Psychopharmacology 233, 163–186 (2016).
doi: 10.1007/s00213-015-4151-3
Polter, A. M. & Kauer, J. A. Stress and VTA synapses: implications for addiction and depression. Eur. J. Neurosci. 39, 1179–1188 (2014).
doi: 10.1111/ejn.12490
pubmed: 4019343
pmcid: 4019343
McNamara, C. G., Tejero-Cantero, A., Trouche, S., Campo-Urriza, N. & Dupret, D. Dopaminergic neurons promote hippocampal reactivation and spatial memory persistence. Nat. Neurosci. 17, 1658–1660 (2014).
doi: 10.1038/nn.3843
pubmed: 4241115
pmcid: 4241115
Lisman, J. E. & Grace, A. A. The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron 46, 703–713 (2005).
doi: 10.1016/j.neuron.2005.05.002
Rosen, Z. B., Cheung, S. & Siegelbaum, S. A. Midbrain dopamine neurons bidirectionally regulate CA3-CA1 synaptic drive. Nat. Neurosci. 18, 1763 (2015).
doi: 10.1038/nn.4152
Takeuchi, T. et al. Locus coeruleus and dopaminergic consolidation of everyday memory. Nature 537, 357–362 (2016).
doi: 10.1038/nature19325
pubmed: 5161591
pmcid: 5161591
Kempadoo, K. A., Mosharov, E. V., Choi, S. J., Sulzer, D. & Kandel, E. R. Dopamine release from the locus coeruleus to the dorsal hippocampus promotes spatial learning and memory. Proc. Natl Acad. Sci. USA 113, 14835–14840 (2016).
doi: 10.1073/pnas.1616515114
D’Souza, M. S. Glutamatergic transmission in drug reward: implications for drug addiction. Front Neurosci. 9, 404 (2015).
pubmed: 4633516
pmcid: 4633516
Bariselli, S., Glangetas, C., Tzanoulinou, S. & Bellone, C. Ventral tegmental area subcircuits process rewarding and aversive experiences. J. Neurochem. 139, 1071–1080 (2016).
doi: 10.1111/jnc.13779
Morales, M. & Margolis, E. B. Ventral tegmental area: cellular heterogeneity, connectivity and behaviour. Nat. Rev. Neurosci. 18, 73–85 (2017).
doi: 10.1038/nrn.2016.165
Ntamati, N. R. & Luscher, C. VTA projection neurons releasing GABA and glutamate in the dentate gyrus. eNeuro 3, https://doi.org/10.1523/ENEURO.0137-16.2016 (2016).
doi: 10.1523/ENEURO.0137-16.2016
pubmed: 5020313
pmcid: 5020313
Faget, L. et al. Afferent inputs to neurotransmitter-defined cell types in the ventral tegmental area. Cell Rep. 15, 2796–2808 (2016).
doi: 10.1016/j.celrep.2016.05.057
pubmed: 27292633
pmcid: 27292633
Yamawaki, N., Corcoran, K. A., Guedea, A. L., Shepherd, G. M. G. & Radulovic, J. Differential contributions of glutamatergic hippocampal–>retrosplenial cortical projections to the formation and persistence of context memories. Cereb. Cortex 29, 2728–2736 (2018).
doi: 10.1093/cercor/bhy142
Wiltgen, B. J., Sanders, M. J., Behne, N. S. & Fanselow, M. S. Sex differences, context preexposure, and the immediate shock deficit in Pavlovian context conditioning with mice. Behav. Neurosci. 115, 26–32 (2001).
doi: 10.1037/0735-7044.115.1.26
pubmed: 11256449
pmcid: 11256449
Kenney, J. W. & Gould, T. J. Nicotine enhances context learning but not context-shock associative learning. Behav. Neurosci. 122, 1158–1165 (2008).
doi: 10.1037/a0012807
pubmed: 18823171
pmcid: 18823171
Robinson-Drummer, P. A. & Stanton, M. E. Using the context preexposure facilitation effect to study long-term context memory in preweanling, juvenile, adolescent, and adult rats. Physiol. Behav. 148, 22–28 (2015).
doi: 10.1016/j.physbeh.2014.12.033
pubmed: 25542890
pmcid: 25542890
Goode, T. D. & Maren, S. Animal models of fear relapse. ILAR J. 55, 246–258 (2014).
doi: 10.1093/ilar/ilu008
pubmed: 25225304
pmcid: 25225304
Tronson, N. C., Corcoran, K. A., Jovasevic, V. & Radulovic, J. Fear conditioning and extinction: emotional states encoded by distinct signaling pathways. Trends Neurosci. 35, 145–55 (2011).
doi: 10.1016/j.tins.2011.10.003
pubmed: 22118930
pmcid: 22118930
Pan, W. X. & McNaughton, N. The role of the medial supramammillary nucleus in the control of hippocampal theta activity and behaviour in rats. Eur. J. Neurosci. 16, 1797–1809 (2002).
doi: 10.1046/j.1460-9568.2002.02267.x
pubmed: 12431233
pmcid: 12431233
Hnasko, T. S. & Edwards, R. H. Neurotransmitter corelease: mechanism and physiological role. Annu. Rev. Physiol. 74, 225–243 (2012).
doi: 10.1146/annurev-physiol-020911-153315
pubmed: 22054239
pmcid: 22054239
Taylor, S. R. et al. GABAergic and glutamatergic efferents of the mouse ventral tegmental area. J. Comp. Neurol. 522, 3308–3334 (2014).
doi: 10.1002/cne.23603
pubmed: 24715505
pmcid: 24715505
Swanson, L. W. The projections of the ventral tegmental area and adjacent regions: a combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res. Bull. 9, 321–353 (1982).
doi: 10.1016/0361-9230(82)90145-9
Gasbarri, A., Packard, M. G., Campana, E. & Pacitti, C. Anterograde and retrograde tracing of projections from the ventral tegmental area to the hippocampal formation in the rat. Brain Res. Bull. 33, 445–452 (1994).
doi: 10.1016/0361-9230(94)90288-7
Wiegert, J. S., Mahn, M., Prigge, M., Printz, Y. & Yizhar, O. Silencing neurons: tools, applications, and experimental constraints. Neuron 95, 504–529 (2017).
doi: 10.1016/j.neuron.2017.06.050
pubmed: 5830081
pmcid: 5830081
Karalis, N. et al. 4-Hz oscillations synchronize prefrontal-amygdala circuits during fear behavior. Nat. Neurosci. 19, 605–612 (2016).
doi: 10.1038/nn.4251
pubmed: 4843971
pmcid: 4843971
Seidenbecher, T., Laxmi, T. R., Stork, O. & Pape, H. C. Amygdalar and hippocampal theta rhythm synchronization during fear memory retrieval. Science 301, 846–850 (2003).
doi: 10.1126/science.1085818
Johnson, D. M., Baker, J. D. & Azorlosa, J. L. Acquisition, extinction, and reinstatement of Pavlovian fear conditioning: the roles of the NMDA receptor and nitric oxide. Brain Res. 857, 66–70 (2000).
doi: 10.1016/S0006-8993(99)02388-4
Shen, H., Igarashi, H., Imamura, N., Matsuki, N. & Nomura, H. N-methyl-D-aspartate receptors and protein synthesis are necessary for reinstatement of conditioned fear. Neuroreport 24, 763–767 (2013).
doi: 10.1097/WNR.0b013e328363b36c
Gao, C. et al. IQGAP1 regulates NR2A signaling, spine density, and cognitive processes. J. Neurosci. 31, 8533–8542 (2011).
doi: 10.1523/JNEUROSCI.1300-11.2011
pubmed: 3121195
pmcid: 3121195
Baker, P. M. et al. The lateral habenula circuitry: reward processing and cognitive control. J. Neurosci. 36, 11482–11488 (2016).
doi: 10.1523/JNEUROSCI.2350-16.2016
pubmed: 5125215
pmcid: 5125215
Lammel, S., Lim, B. K. & Malenka, R. C. Reward and aversion in a heterogeneous midbrain dopamine system. Neuropharmacology 76, 351–359 (2014).
doi: 10.1016/j.neuropharm.2013.03.019
Barker, D. J., Root, D. H., Zhang, S. & Morales, M. Multiplexed neurochemical signaling by neurons of the ventral tegmental area. J. Chem. Neuroanat. 73, 33–42 (2016).
doi: 10.1016/j.jchemneu.2015.12.016
pubmed: 4818729
pmcid: 4818729
Root, D. H., Estrin, D. J. & Morales, M. Aversion or salience signaling by ventral tegmental area glutamate neurons. iScience 2, 51–62 (2018).
doi: 10.1016/j.isci.2018.03.008
pubmed: 5993057
pmcid: 5993057
Tye, K. M. Neural circuit motifs in valence processing. Neuron 100, 436–452 (2018).
doi: 10.1016/j.neuron.2018.10.001
pubmed: 6590698
pmcid: 6590698
Berridge, K. C. Affective valence in the brain: modules or modes? Nat. Rev. Neurosci. 20, 225–234 (2019).
doi: 10.1038/s41583-019-0122-8
pubmed: 6426670
pmcid: 6426670
Brancato, A. et al. Sub-chronic variable stress induces sex-specific effects on glutamatergic synapses in the nucleus accumbens. Neuroscience 350, 180–189 (2017).
doi: 10.1016/j.neuroscience.2017.03.014
pubmed: 5427664
pmcid: 5427664
Christoffel, D. J., Golden, S. A. & Russo, S. J. Structural and synaptic plasticity in stress-related disorders. Rev. Neurosci. 22, 535–549 (2011).
doi: 10.1515/RNS.2011.044
pubmed: 3212803
pmcid: 3212803
Cohen-Cory, S. BDNF modulates, but does not mediate, activity-dependent branching and remodeling of optic axon arbors in vivo. J. Neurosci. 19, 9996–10003 (1999).
doi: 10.1523/JNEUROSCI.19-22-09996.1999
pubmed: 6782987
pmcid: 6782987
Hayano, Y. et al. Netrin-4 regulates thalamocortical axon branching in an activity-dependent fashion. Proc. Natl Acad. Sci. USA 111, 15226–15231 (2014).
doi: 10.1073/pnas.1402095111
Lester, R. A. & Jahr, C. E. NMDA channel behavior depends on agonist affinity. J. Neurosci. 12, 635–643 (1992).
doi: 10.1523/JNEUROSCI.12-02-00635.1992
pubmed: 6575615
pmcid: 6575615
Erreger, K., Dravid, S. M., Banke, T. G., Wyllie, D. J. & Traynelis, S. F. Subunit-specific gating controls rat NR1/NR2A and NR1/NR2B NMDA channel kinetics and synaptic signalling profiles. J. Physiol. 563, 345–358 (2005).
doi: 10.1113/jphysiol.2004.080028
pubmed: 1665591
pmcid: 1665591
Yoo, J. H. et al. Ventral tegmental area glutamate neurons co-release GABA and promote positive reinforcement. Nat. Commun. 7, 13697 (2016).
doi: 10.1038/ncomms13697
pubmed: 5171775
pmcid: 5171775
Zander, J. F. et al. Synaptic and vesicular coexistence of VGLUT and VGAT in selected excitatory and inhibitory synapses. J. Neurosci. 30, 7634–7645 (2010).
doi: 10.1523/JNEUROSCI.0141-10.2010
pubmed: 6632366
pmcid: 6632366
Neisewander, J. L., Pierce, R. C. & Bardo, M. T. Naloxone enhances the expression of morphine-induced conditioned place preference. Psychopharmacology 100, 201–205 (1990).
doi: 10.1007/BF02244406
Vong, L. et al. Leptin action on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons. Neuron 71, 142–154 (2011).
doi: 10.1016/j.neuron.2011.05.028
pubmed: 3134797
pmcid: 3134797
Taniguchi, H. et al. A resource of Cre driver lines for genetic targeting of GABAergic neurons in cerebral cortex. Neuron 71, 995–1013 (2011).
doi: 10.1016/j.neuron.2011.07.026
pubmed: 3779648
pmcid: 3779648
Backman, C. M. et al. Characterization of a mouse strain expressing Cre recombinase from the 3’ untranslated region of the dopamine transporter locus. Genesis 44, 383–390 (2006).
doi: 10.1002/dvg.20228
Corcoran, K. A. et al. NMDA receptors in retrosplenial cortex are necessary for retrieval of recent and remote context fear memory. J. Neurosci. 31, 11655–11659 (2011).
doi: 10.1523/JNEUROSCI.2107-11.2011
pubmed: 3159389
pmcid: 3159389
Fischer, A., Sananbenesi, F., Schrick, C., Spiess, J. & Radulovic, J. Distinct roles of hippocampal de novo protein synthesis and actin rearrangement in extinction of contextual fear. J. Neurosci. 24, 1962–1966 (2004).
doi: 10.1523/JNEUROSCI.5112-03.2004
pubmed: 6730386
pmcid: 6730386
Shin, G. et al. Flexible near-field wireless optoelectronics as subdermal implants for broad applications in optogenetics. Neuron 93, 509–521.e3 (2017).
doi: 10.1016/j.neuron.2016.12.031
pubmed: 5377903
pmcid: 5377903
Jeong, J. W. et al. Wireless optofluidic systems for programmable in vivo pharmacology and optogenetics. Cell 162, 662–674 (2015).
doi: 10.1016/j.cell.2015.06.058
pubmed: 4525768
pmcid: 4525768
Jovasevic, V. et al. GABAergic mechanisms regulated by miR-33 encode state-dependent fear. Nat. Neurosci. 18, 1265–1271 (2015).
doi: 10.1038/nn.4084
pubmed: 26280760
pmcid: 26280760
Guzman, Y. F. et al. Fear-enhancing effects of septal oxytocin receptors. Nat. Neurosci. 16, 1185–1187 (2013).
doi: 10.1038/nn.3465
pubmed: 23872596
pmcid: 23872596