Excitatory VTA to DH projections provide a valence signal to memory circuits.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
19 03 2020
Historique:
received: 30 06 2019
accepted: 11 02 2020
entrez: 21 3 2020
pubmed: 21 3 2020
medline: 16 7 2020
Statut: epublish

Résumé

The positive or negative value (valence) of past experiences is normally integrated into neuronal circuits that encode episodic memories and plays an important role in guiding behavior. Here, we show, using mouse behavioral models, that glutamatergic afferents from the ventral tegmental area to the dorsal hippocampus (VTA→DH) signal negative valence to memory circuits, leading to the formation of fear-inducing context memories and to context-specific reinstatement of fear. To a lesser extent, these projections also contributed to opioid-induced place preference, suggesting a role in signaling positive valence as well, and thus a lack of dedicated polarity. Manipulations of VTA terminal activity were more effective in females and paralleled by sex differences in glutamatergic signaling. By prioritizing retrieval of negative and positive over neutral memories, the VTA→DH circuit can facilitate the selection of adaptive behaviors when current and past experiences are valence congruent.

Identifiants

pubmed: 32193428
doi: 10.1038/s41467-020-15035-z
pii: 10.1038/s41467-020-15035-z
pmc: PMC7081331
doi:

Substances chimiques

Glutamates 0
Receptors, N-Methyl-D-Aspartate 0
Vesicular Glutamate Transport Protein 2 0
Morphine 76I7G6D29C
Glutamate Decarboxylase EC 4.1.1.15
glutamate decarboxylase 2 EC 4.1.1.15

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1466

Subventions

Organisme : NIDA NIH HHS
ID : P50 DA044121
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH108837
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH078064
Pays : United States

Références

Rolls, E. T. Limbic systems for emotion and for memory, but no single limbic system. Cortex 62, 119–157 (2015).
doi: 10.1016/j.cortex.2013.12.005 pubmed: 24439664 pmcid: 24439664
Robinson, O. J., Charney, D. R., Overstreet, C., Vytal, K. & Grillon, C. The adaptive threat bias in anxiety: amygdala-dorsomedial prefrontal cortex coupling and aversive amplification. Neuroimage 60, 523–529 (2012).
doi: 10.1016/j.neuroimage.2011.11.096 pubmed: 22178453 pmcid: 22178453
Vervliet, B., Craske, M. G. & Hermans, D. Fear extinction and relapse: state of the art. Annu Rev. Clin. Psychol. 9, 215–248 (2013).
doi: 10.1146/annurev-clinpsy-050212-185542 pubmed: 23537484 pmcid: 23537484
Hyman, S. E., Malenka, R. C. & Nestler, E. J. Neural mechanisms of addiction: the role of reward-related learning and memory. Annu. Rev. Neurosci. 29, 565–598 (2006).
doi: 10.1146/annurev.neuro.29.051605.113009 pubmed: 16776597 pmcid: 16776597
Koob, G. F. & Volkow, N. D. Neurocircuitry of addiction. Neuropsychopharmacology 35, 217–238 (2010).
doi: 10.1038/npp.2009.110
McLean, C. P., Asnaani, A., Litz, B. T. & Hofmann, S. G. Gender differences in anxiety disorders: prevalence, course of illness, comorbidity and burden of illness. J. Psychiatr. Res. 45, 1027–1035 (2011).
doi: 10.1016/j.jpsychires.2011.03.006 pubmed: 21439576 pmcid: 21439576
Greenfield, S. F. et al. Substance abuse treatment entry, retention, and outcome in women: a review of the literature. Drug Alcohol Depend. 86, 1–21 (2007).
doi: 10.1016/j.drugalcdep.2006.05.012
Bobzean, S. A., DeNobrega, A. K. & Perrotti, L. I. Sex differences in the neurobiology of drug addiction. Exp. Neurol. 259, 64–74 (2014).
doi: 10.1016/j.expneurol.2014.01.022
Fanselow, M. S. Contextual fear, gestalt memories, and the hippocampus. Behav. Brain Res. 110, 73–81 (2000).
doi: 10.1016/S0166-4328(99)00186-2
Tulving, E. Memory and consciousness. Can. Psychol. 26, 1–12 (1985).
doi: 10.1037/h0080017
Moser, E. I., Moser, M. B. & McNaughton, B. L. Spatial representation in the hippocampal formation: a history. Nat. Neurosci. 20, 1448–1464 (2017).
doi: 10.1038/nn.4653
Heys, J. G., Rangarajan, K. V. & Dombeck, D. A. The functional micro-organization of grid cells revealed by cellular-resolution imaging. Neuron 84, 1079–1090 (2014).
doi: 10.1016/j.neuron.2014.10.048 pubmed: 4360978 pmcid: 4360978
Robinson, N. T. M. et al. Medial entorhinal cortex selectively supports temporal coding by hippocampal neurons. Neuron 94, 677–688.e6 (2017).
doi: 10.1016/j.neuron.2017.04.003 pubmed: 5465388 pmcid: 5465388
Kitamura, T. et al. Island cells control temporal association memory. Science 343, 896–901 (2014).
doi: 10.1126/science.1244634 pubmed: 5572219 pmcid: 5572219
Kitamura, T. et al. Entorhinal cortical ocean cells encode specific contexts and drive context-specific fear memory. Neuron 87, 1317–1331 (2015).
doi: 10.1016/j.neuron.2015.08.036 pubmed: 5094459 pmcid: 5094459
Redondo, R. L. et al. Bidirectional switch of the valence associated with a hippocampal contextual memory engram. Nature 513, 426–430 (2014).
doi: 10.1038/nature13725 pubmed: 4169316 pmcid: 4169316
Fields, H. L., Hjelmstad, G. O., Margolis, E. B. & Nicola, S. M. Ventral tegmental area neurons in learned appetitive behavior and positive reinforcement. Annu. Rev. Neurosci. 30, 289–316 (2007).
doi: 10.1146/annurev.neuro.30.051606.094341
Langlois, L. D. & Nugent, F. S. Opiates and plasticity in the ventral tegmental area. ACS Chem. Neurosci. 8, 1830–1838 (2017).
doi: 10.1021/acschemneuro.7b00281 pubmed: 5775906 pmcid: 5775906
Holly, E. N. & Miczek, K. A. Ventral tegmental area dopamine revisited: effects of acute and repeated stress. Psychopharmacology 233, 163–186 (2016).
doi: 10.1007/s00213-015-4151-3
Polter, A. M. & Kauer, J. A. Stress and VTA synapses: implications for addiction and depression. Eur. J. Neurosci. 39, 1179–1188 (2014).
doi: 10.1111/ejn.12490 pubmed: 4019343 pmcid: 4019343
McNamara, C. G., Tejero-Cantero, A., Trouche, S., Campo-Urriza, N. & Dupret, D. Dopaminergic neurons promote hippocampal reactivation and spatial memory persistence. Nat. Neurosci. 17, 1658–1660 (2014).
doi: 10.1038/nn.3843 pubmed: 4241115 pmcid: 4241115
Lisman, J. E. & Grace, A. A. The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron 46, 703–713 (2005).
doi: 10.1016/j.neuron.2005.05.002
Rosen, Z. B., Cheung, S. & Siegelbaum, S. A. Midbrain dopamine neurons bidirectionally regulate CA3-CA1 synaptic drive. Nat. Neurosci. 18, 1763 (2015).
doi: 10.1038/nn.4152
Takeuchi, T. et al. Locus coeruleus and dopaminergic consolidation of everyday memory. Nature 537, 357–362 (2016).
doi: 10.1038/nature19325 pubmed: 5161591 pmcid: 5161591
Kempadoo, K. A., Mosharov, E. V., Choi, S. J., Sulzer, D. & Kandel, E. R. Dopamine release from the locus coeruleus to the dorsal hippocampus promotes spatial learning and memory. Proc. Natl Acad. Sci. USA 113, 14835–14840 (2016).
doi: 10.1073/pnas.1616515114
D’Souza, M. S. Glutamatergic transmission in drug reward: implications for drug addiction. Front Neurosci. 9, 404 (2015).
pubmed: 4633516 pmcid: 4633516
Bariselli, S., Glangetas, C., Tzanoulinou, S. & Bellone, C. Ventral tegmental area subcircuits process rewarding and aversive experiences. J. Neurochem. 139, 1071–1080 (2016).
doi: 10.1111/jnc.13779
Morales, M. & Margolis, E. B. Ventral tegmental area: cellular heterogeneity, connectivity and behaviour. Nat. Rev. Neurosci. 18, 73–85 (2017).
doi: 10.1038/nrn.2016.165
Ntamati, N. R. & Luscher, C. VTA projection neurons releasing GABA and glutamate in the dentate gyrus. eNeuro 3, https://doi.org/10.1523/ENEURO.0137-16.2016 (2016).
doi: 10.1523/ENEURO.0137-16.2016 pubmed: 5020313 pmcid: 5020313
Faget, L. et al. Afferent inputs to neurotransmitter-defined cell types in the ventral tegmental area. Cell Rep. 15, 2796–2808 (2016).
doi: 10.1016/j.celrep.2016.05.057 pubmed: 27292633 pmcid: 27292633
Yamawaki, N., Corcoran, K. A., Guedea, A. L., Shepherd, G. M. G. & Radulovic, J. Differential contributions of glutamatergic hippocampal–>retrosplenial cortical projections to the formation and persistence of context memories. Cereb. Cortex 29, 2728–2736 (2018).
doi: 10.1093/cercor/bhy142
Wiltgen, B. J., Sanders, M. J., Behne, N. S. & Fanselow, M. S. Sex differences, context preexposure, and the immediate shock deficit in Pavlovian context conditioning with mice. Behav. Neurosci. 115, 26–32 (2001).
doi: 10.1037/0735-7044.115.1.26 pubmed: 11256449 pmcid: 11256449
Kenney, J. W. & Gould, T. J. Nicotine enhances context learning but not context-shock associative learning. Behav. Neurosci. 122, 1158–1165 (2008).
doi: 10.1037/a0012807 pubmed: 18823171 pmcid: 18823171
Robinson-Drummer, P. A. & Stanton, M. E. Using the context preexposure facilitation effect to study long-term context memory in preweanling, juvenile, adolescent, and adult rats. Physiol. Behav. 148, 22–28 (2015).
doi: 10.1016/j.physbeh.2014.12.033 pubmed: 25542890 pmcid: 25542890
Goode, T. D. & Maren, S. Animal models of fear relapse. ILAR J. 55, 246–258 (2014).
doi: 10.1093/ilar/ilu008 pubmed: 25225304 pmcid: 25225304
Tronson, N. C., Corcoran, K. A., Jovasevic, V. & Radulovic, J. Fear conditioning and extinction: emotional states encoded by distinct signaling pathways. Trends Neurosci. 35, 145–55 (2011).
doi: 10.1016/j.tins.2011.10.003 pubmed: 22118930 pmcid: 22118930
Pan, W. X. & McNaughton, N. The role of the medial supramammillary nucleus in the control of hippocampal theta activity and behaviour in rats. Eur. J. Neurosci. 16, 1797–1809 (2002).
doi: 10.1046/j.1460-9568.2002.02267.x pubmed: 12431233 pmcid: 12431233
Hnasko, T. S. & Edwards, R. H. Neurotransmitter corelease: mechanism and physiological role. Annu. Rev. Physiol. 74, 225–243 (2012).
doi: 10.1146/annurev-physiol-020911-153315 pubmed: 22054239 pmcid: 22054239
Taylor, S. R. et al. GABAergic and glutamatergic efferents of the mouse ventral tegmental area. J. Comp. Neurol. 522, 3308–3334 (2014).
doi: 10.1002/cne.23603 pubmed: 24715505 pmcid: 24715505
Swanson, L. W. The projections of the ventral tegmental area and adjacent regions: a combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res. Bull. 9, 321–353 (1982).
doi: 10.1016/0361-9230(82)90145-9
Gasbarri, A., Packard, M. G., Campana, E. & Pacitti, C. Anterograde and retrograde tracing of projections from the ventral tegmental area to the hippocampal formation in the rat. Brain Res. Bull. 33, 445–452 (1994).
doi: 10.1016/0361-9230(94)90288-7
Wiegert, J. S., Mahn, M., Prigge, M., Printz, Y. & Yizhar, O. Silencing neurons: tools, applications, and experimental constraints. Neuron 95, 504–529 (2017).
doi: 10.1016/j.neuron.2017.06.050 pubmed: 5830081 pmcid: 5830081
Karalis, N. et al. 4-Hz oscillations synchronize prefrontal-amygdala circuits during fear behavior. Nat. Neurosci. 19, 605–612 (2016).
doi: 10.1038/nn.4251 pubmed: 4843971 pmcid: 4843971
Seidenbecher, T., Laxmi, T. R., Stork, O. & Pape, H. C. Amygdalar and hippocampal theta rhythm synchronization during fear memory retrieval. Science 301, 846–850 (2003).
doi: 10.1126/science.1085818
Johnson, D. M., Baker, J. D. & Azorlosa, J. L. Acquisition, extinction, and reinstatement of Pavlovian fear conditioning: the roles of the NMDA receptor and nitric oxide. Brain Res. 857, 66–70 (2000).
doi: 10.1016/S0006-8993(99)02388-4
Shen, H., Igarashi, H., Imamura, N., Matsuki, N. & Nomura, H. N-methyl-D-aspartate receptors and protein synthesis are necessary for reinstatement of conditioned fear. Neuroreport 24, 763–767 (2013).
doi: 10.1097/WNR.0b013e328363b36c
Gao, C. et al. IQGAP1 regulates NR2A signaling, spine density, and cognitive processes. J. Neurosci. 31, 8533–8542 (2011).
doi: 10.1523/JNEUROSCI.1300-11.2011 pubmed: 3121195 pmcid: 3121195
Baker, P. M. et al. The lateral habenula circuitry: reward processing and cognitive control. J. Neurosci. 36, 11482–11488 (2016).
doi: 10.1523/JNEUROSCI.2350-16.2016 pubmed: 5125215 pmcid: 5125215
Lammel, S., Lim, B. K. & Malenka, R. C. Reward and aversion in a heterogeneous midbrain dopamine system. Neuropharmacology 76, 351–359 (2014).
doi: 10.1016/j.neuropharm.2013.03.019
Barker, D. J., Root, D. H., Zhang, S. & Morales, M. Multiplexed neurochemical signaling by neurons of the ventral tegmental area. J. Chem. Neuroanat. 73, 33–42 (2016).
doi: 10.1016/j.jchemneu.2015.12.016 pubmed: 4818729 pmcid: 4818729
Root, D. H., Estrin, D. J. & Morales, M. Aversion or salience signaling by ventral tegmental area glutamate neurons. iScience 2, 51–62 (2018).
doi: 10.1016/j.isci.2018.03.008 pubmed: 5993057 pmcid: 5993057
Tye, K. M. Neural circuit motifs in valence processing. Neuron 100, 436–452 (2018).
doi: 10.1016/j.neuron.2018.10.001 pubmed: 6590698 pmcid: 6590698
Berridge, K. C. Affective valence in the brain: modules or modes? Nat. Rev. Neurosci. 20, 225–234 (2019).
doi: 10.1038/s41583-019-0122-8 pubmed: 6426670 pmcid: 6426670
Brancato, A. et al. Sub-chronic variable stress induces sex-specific effects on glutamatergic synapses in the nucleus accumbens. Neuroscience 350, 180–189 (2017).
doi: 10.1016/j.neuroscience.2017.03.014 pubmed: 5427664 pmcid: 5427664
Christoffel, D. J., Golden, S. A. & Russo, S. J. Structural and synaptic plasticity in stress-related disorders. Rev. Neurosci. 22, 535–549 (2011).
doi: 10.1515/RNS.2011.044 pubmed: 3212803 pmcid: 3212803
Cohen-Cory, S. BDNF modulates, but does not mediate, activity-dependent branching and remodeling of optic axon arbors in vivo. J. Neurosci. 19, 9996–10003 (1999).
doi: 10.1523/JNEUROSCI.19-22-09996.1999 pubmed: 6782987 pmcid: 6782987
Hayano, Y. et al. Netrin-4 regulates thalamocortical axon branching in an activity-dependent fashion. Proc. Natl Acad. Sci. USA 111, 15226–15231 (2014).
doi: 10.1073/pnas.1402095111
Lester, R. A. & Jahr, C. E. NMDA channel behavior depends on agonist affinity. J. Neurosci. 12, 635–643 (1992).
doi: 10.1523/JNEUROSCI.12-02-00635.1992 pubmed: 6575615 pmcid: 6575615
Erreger, K., Dravid, S. M., Banke, T. G., Wyllie, D. J. & Traynelis, S. F. Subunit-specific gating controls rat NR1/NR2A and NR1/NR2B NMDA channel kinetics and synaptic signalling profiles. J. Physiol. 563, 345–358 (2005).
doi: 10.1113/jphysiol.2004.080028 pubmed: 1665591 pmcid: 1665591
Yoo, J. H. et al. Ventral tegmental area glutamate neurons co-release GABA and promote positive reinforcement. Nat. Commun. 7, 13697 (2016).
doi: 10.1038/ncomms13697 pubmed: 5171775 pmcid: 5171775
Zander, J. F. et al. Synaptic and vesicular coexistence of VGLUT and VGAT in selected excitatory and inhibitory synapses. J. Neurosci. 30, 7634–7645 (2010).
doi: 10.1523/JNEUROSCI.0141-10.2010 pubmed: 6632366 pmcid: 6632366
Neisewander, J. L., Pierce, R. C. & Bardo, M. T. Naloxone enhances the expression of morphine-induced conditioned place preference. Psychopharmacology 100, 201–205 (1990).
doi: 10.1007/BF02244406
Vong, L. et al. Leptin action on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons. Neuron 71, 142–154 (2011).
doi: 10.1016/j.neuron.2011.05.028 pubmed: 3134797 pmcid: 3134797
Taniguchi, H. et al. A resource of Cre driver lines for genetic targeting of GABAergic neurons in cerebral cortex. Neuron 71, 995–1013 (2011).
doi: 10.1016/j.neuron.2011.07.026 pubmed: 3779648 pmcid: 3779648
Backman, C. M. et al. Characterization of a mouse strain expressing Cre recombinase from the 3’ untranslated region of the dopamine transporter locus. Genesis 44, 383–390 (2006).
doi: 10.1002/dvg.20228
Corcoran, K. A. et al. NMDA receptors in retrosplenial cortex are necessary for retrieval of recent and remote context fear memory. J. Neurosci. 31, 11655–11659 (2011).
doi: 10.1523/JNEUROSCI.2107-11.2011 pubmed: 3159389 pmcid: 3159389
Fischer, A., Sananbenesi, F., Schrick, C., Spiess, J. & Radulovic, J. Distinct roles of hippocampal de novo protein synthesis and actin rearrangement in extinction of contextual fear. J. Neurosci. 24, 1962–1966 (2004).
doi: 10.1523/JNEUROSCI.5112-03.2004 pubmed: 6730386 pmcid: 6730386
Shin, G. et al. Flexible near-field wireless optoelectronics as subdermal implants for broad applications in optogenetics. Neuron 93, 509–521.e3 (2017).
doi: 10.1016/j.neuron.2016.12.031 pubmed: 5377903 pmcid: 5377903
Jeong, J. W. et al. Wireless optofluidic systems for programmable in vivo pharmacology and optogenetics. Cell 162, 662–674 (2015).
doi: 10.1016/j.cell.2015.06.058 pubmed: 4525768 pmcid: 4525768
Jovasevic, V. et al. GABAergic mechanisms regulated by miR-33 encode state-dependent fear. Nat. Neurosci. 18, 1265–1271 (2015).
doi: 10.1038/nn.4084 pubmed: 26280760 pmcid: 26280760
Guzman, Y. F. et al. Fear-enhancing effects of septal oxytocin receptors. Nat. Neurosci. 16, 1185–1187 (2013).
doi: 10.1038/nn.3465 pubmed: 23872596 pmcid: 23872596

Auteurs

Yuan Han (Y)

Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL, 60611, USA.
Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.

Yi Zhang (Y)

Department of Materials Science and Engineering, Northwestern University, 60208, Evanston, IL, USA.
College of Engineering, University of Missouri, Columbia, MO, 65211, USA.

Haram Kim (H)

Department of Physiology, Northwestern University, Chicago, IL, 60611, USA.

Viktoriya S Grayson (VS)

Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL, 60611, USA.

Vladimir Jovasevic (V)

Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL, 60611, USA.

Wenjie Ren (W)

Department of Physiology, Northwestern University, Chicago, IL, 60611, USA.

Maria V Centeno (MV)

Department of Physiology, Northwestern University, Chicago, IL, 60611, USA.

Anita L Guedea (AL)

Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL, 60611, USA.

Mariah A A Meyer (MAA)

Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL, 60611, USA.

Yixin Wu (Y)

Department of Materials Science and Engineering, Northwestern University, 60208, Evanston, IL, USA.

Philipp Gutruf (P)

Department of Materials Science and Engineering, Northwestern University, 60208, Evanston, IL, USA.
Biomedical Engineering, College of Engineering, The University of Arizona, Tucson, AZ, 85721, USA.

Dalton J Surmeier (DJ)

Department of Physiology, Northwestern University, Chicago, IL, 60611, USA.

Can Gao (C)

Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.

Marco Martina (M)

Department of Physiology, Northwestern University, Chicago, IL, 60611, USA.

Apkar V Apkarian (AV)

Department of Physiology, Northwestern University, Chicago, IL, 60611, USA.

John A Rogers (JA)

Department of Materials Science and Engineering, Northwestern University, 60208, Evanston, IL, USA.

Jelena Radulovic (J)

Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL, 60611, USA. j-radulovic@northwestern.edu.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH