Longitudinal phenotype development in a minipig model of neurofibromatosis type 1.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
19 03 2020
19 03 2020
Historique:
received:
16
10
2019
accepted:
17
02
2020
entrez:
21
3
2020
pubmed:
21
3
2020
medline:
15
12
2020
Statut:
epublish
Résumé
Neurofibromatosis type 1 (NF1) is a rare, autosomal dominant disease with variable clinical presentations. Large animal models are useful to help dissect molecular mechanisms, determine relevant biomarkers, and develop effective therapeutics. Here, we studied a NF1 minipig model (NF1
Identifiants
pubmed: 32193437
doi: 10.1038/s41598-020-61251-4
pii: 10.1038/s41598-020-61251-4
pmc: PMC7081358
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
5046Subventions
Organisme : NCI NIH HHS
ID : P30 CA086862
Pays : United States
Organisme : NIEHS NIH HHS
ID : P30 ES005605
Pays : United States
Organisme : NIH HHS
ID : S10 OD018526
Pays : United States
Références
Hirbe, A. C. & Gutmann, D. H. Neurofibromatosis type 1: a multidisciplinary approach to care. The Lancet Neurology 13, 834–843, https://doi.org/10.1016/S1474-4422(14)70063-8 (2014).
doi: 10.1016/S1474-4422(14)70063-8
pubmed: 25030515
pmcid: 25030515
Yap, Y. S. et al. The NF1 gene revisited – from bench to bedside. Oncotarget 5, 5873–5892 (2014).
doi: 10.18632/oncotarget.2194
pubmed: 25026295
pmcid: 25026295
Kehrer-Sawatzki, H., Mautner, V. F. & Cooper, D. N. Emerging genotype–phenotype relationships. Human Genetics 136, 349–376, https://doi.org/10.1007/s00439-017-1766-y (2017).
doi: 10.1007/s00439-017-1766-y
pubmed: 28213670
pmcid: 28213670
Florent, E. et al. Skeletal abnormalities in neurofibromatosis type 1: Approaches to therapeutic options. American Journal of Medical Genetics Part A 149A, 2327–2338, https://doi.org/10.1002/ajmg.a.33045 (2009).
doi: 10.1002/ajmg.a.33045
Blanchard, G. et al. Systematic MRI in NF1 children under six years of age for the diagnosis of optic pathway gliomas. Study and outcome of a French cohort. European journal of paediatric neurology: EJPN: official journal of the European Paediatric Neurology. Society 20, 275–281, https://doi.org/10.1016/j.ejpn.2015.12.002 (2016).
doi: 10.1016/j.ejpn.2015.12.002
Sellmer, L. et al. Serial MRIs provide novel insight into natural history of optic pathway gliomas in patients with neurofibromatosis 1. Orphanet journal of rare diseases 13, 62, https://doi.org/10.1186/s13023-018-0811-9 (2018).
doi: 10.1186/s13023-018-0811-9
pubmed: 29685181
pmcid: 29685181
Trevisson, E. et al. Natural history of optic pathway gliomas in a cohort of unselected patients affected by Neurofibromatosis 1. Journal of neuro-oncology 134, 279–287, https://doi.org/10.1007/s11060-017-2517-6 (2017).
doi: 10.1007/s11060-017-2517-6
pubmed: 28577031
pmcid: 28577031
Jain, V. V., Berry, C. A., Crawford, A. H., Emans, J. B. & Sponseller, P. D. Growing Rods Are an Effective Fusionless Method of Controlling Early-Onset Scoliosis Associated With Neurofibromatosis Type 1 (NF1): A Multicenter Retrospective Case Series. Journal of pediatric orthopedics 37, e612–e618, https://doi.org/10.1097/bpo.0000000000000963 (2017).
doi: 10.1097/bpo.0000000000000963
pubmed: 28234734
pmcid: 28234734
Ueda, K. et al. Computed tomography (CT) findings in 88 neurofibromatosis 1 (NF1) patients: Prevalence rates and correlations of thoracic findings. European journal of radiology 84, 1191–1195, https://doi.org/10.1016/j.ejrad.2015.02.024 (2015).
doi: 10.1016/j.ejrad.2015.02.024
pubmed: 25802206
pmcid: 25802206
Salman, M. S., Hossain, S., Alqublan, L., Bunge, M. & Rozovsky, K. Cerebellar radiological abnormalities in children with neurofibromatosis type 1: part 1 - clinical and neuroimaging findings. Cerebellum & ataxias 5, 14, https://doi.org/10.1186/s40673-018-0093-y (2018).
doi: 10.1186/s40673-018-0093-y
Matsumine, A. et al. Differentiation between neurofibromas and malignant peripheral nerve sheath tumors in neurofibromatosis 1 evaluated by MRI. Journal of Cancer Research and Clinical Oncology 135, 891–900, https://doi.org/10.1007/s00432-008-0523-y (2009).
doi: 10.1007/s00432-008-0523-y
pubmed: 19101731
pmcid: 19101731
Bredella, M. A. et al. Value of PET in the assessment of patients with neurofibromatosis type 1. AJR. American journal of roentgenology 189, 928–935, https://doi.org/10.2214/ajr.07.2060 (2007).
doi: 10.2214/ajr.07.2060
pubmed: 17885067
pmcid: 17885067
Kleinerman, R. A. Radiation-sensitive genetically susceptible pediatric sub-populations. Pediatric Radiology 39, 27–31, https://doi.org/10.1007/s00247-008-1015-6 (2009).
doi: 10.1007/s00247-008-1015-6
Nguyen, R., Dombi, E., Akshintala, S., Baldwin, A. & Widemann, B. C. Characterization of spinal findings in children and adults with neurofibromatosis type 1 enrolled in a natural history study using magnetic resonance imaging. Journal of neuro-oncology 121, 209–215, https://doi.org/10.1007/s11060-014-1629-5 (2015).
doi: 10.1007/s11060-014-1629-5
pubmed: 25293439
pmcid: 25293439
Payne, J. M. et al. Longitudinal assessment of cognition and T2-hyperintensities in NF1: an 18-year study. American journal of medical genetics. Part A 164a, 661–665, https://doi.org/10.1002/ajmg.a.36338 (2014).
doi: 10.1002/ajmg.a.36338
pubmed: 24357578
pmcid: 24357578
Winter, N. et al. Ultrasound assessment of peripheral nerve pathology in neurofibromatosis type 1 and 2. Clinical neurophysiology: official journal of the International Federation of Clinical Neurophysiology 128, 702–706, https://doi.org/10.1016/j.clinph.2017.02.005 (2017).
doi: 10.1016/j.clinph.2017.02.005
Stevenson, D. A. et al. Quantitative Ultrasound and Tibial Dysplasia in Neurofibromatosis Type 1. Journal of clinical densitometry: the official journal of the International Society for Clinical Densitometry 21, 179–184, https://doi.org/10.1016/j.jocd.2017.03.004 (2018).
doi: 10.1016/j.jocd.2017.03.004
Shin, J. et al. Zebrafish neurofibromatosis type 1 genes have redundant functions in tumorigenesis and embryonic development. Disease models & mechanisms 5, 881–894, https://doi.org/10.1242/dmm.009779 (2012).
doi: 10.1242/dmm.009779
Jacks, T. et al. Tumour predisposition in mice heterozygous for a targeted mutation in Nf1. Nature genetics 7, 353–361, https://doi.org/10.1038/ng0794-353 (1994).
doi: 10.1038/ng0794-353
pubmed: 7920653
pmcid: 7920653
Brannan, C. I. et al. Targeted disruption of the neurofibromatosis type-1 gene leads to developmental abnormalities in heart and various neural crest-derived tissues. Genes & development 8, 1019–1029 (1994).
doi: 10.1101/gad.8.9.1019
Zhu, Y. et al. Ablation of NF1 function in neurons induces abnormal development of cerebral cortex and reactive gliosis in the brain. Genes & development 15, 859–876, https://doi.org/10.1101/gad.862101 (2001).
doi: 10.1101/gad.862101
White, K. A. et al. A porcine model of neurofibromatosis type 1 that mimics the human disease. JCI insight 3, https://doi.org/10.1172/jci.insight.120402 (2018).
Isakson, S. H. et al. Genetically engineered minipigs model the major clinical features of human neurofibromatosis type 1. Communications Biology 1, 158, https://doi.org/10.1038/s42003-018-0163-y (2018).
doi: 10.1038/s42003-018-0163-y
pubmed: 30302402
pmcid: 30302402
Li, K. et al. Mice with missense and nonsense NF1 mutations display divergent phenotypes compared with human neurofibromatosis type I. Disease models & mechanisms 9, 759–767, https://doi.org/10.1242/dmm.025783 (2016).
doi: 10.1242/dmm.025783
Prather, R. S., Lorson, M., Ross, J. W., Whyte, J. J. & Walters, E. Genetically Engineered Pig Models for Human. Diseases. Annual review of animal biosciences 1, 203–219, https://doi.org/10.1146/annurev-animal-031412-103715 (2013).
doi: 10.1146/annurev-animal-031412-103715
pubmed: 25387017
pmcid: 25387017
Rogers, C. S. et al. Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs. Science (New York, N.Y.) 321, 1837–1841, https://doi.org/10.1126/science.1163600 (2008).
doi: 10.1126/science.1163600
Schachtschneider, K. M. et al. A validated, transitional and translational porcine model of hepatocellular carcinoma. Oncotarget 8, 63620–63634, https://doi.org/10.18632/oncotarget.18872 (2017).
doi: 10.18632/oncotarget.18872
pubmed: 28969016
pmcid: 28969016
Sieren, J. C. et al. Development and translational imaging of a TP53 porcine tumorigenesis model. The Journal of clinical investigation 124, 4052–4066, https://doi.org/10.1172/jci75447 (2014).
doi: 10.1172/jci75447
pubmed: 25105366
pmcid: 25105366
Askeland, G. et al. A transgenic minipig model of Huntington’s disease shows early signs of behavioral and molecular pathologies. Disease models & mechanisms 11, https://doi.org/10.1242/dmm.035949 (2018).
Beraldi, R. et al. A novel porcine model of ataxia telangiectasia reproduces neurological features and motor deficits of human disease. Human molecular genetics 24, 6473–6484, https://doi.org/10.1093/hmg/ddv356 (2015).
doi: 10.1093/hmg/ddv356
pubmed: 26374845
pmcid: 26374845
Katalan, S. et al. A novel swine model of ricin-induced acute respiratory distress syndrome. Disease models & mechanisms 10, 173–183, https://doi.org/10.1242/dmm.027847 (2017).
doi: 10.1242/dmm.027847
Renner, S. et al. Mild maternal hyperglycemia in INS
Perleberg, C., Kind, A. & Schnieke, A. Genetically engineered pigs as models for human disease. Disease models & mechanisms 11, https://doi.org/10.1242/dmm.030783 (2018).
Khanna, R. et al. Assessment of nociception and related quality-of-life measures in a porcine model of neurofibromatosis type 1. Pain, https://doi.org/10.1097/j.pain.0000000000001648 (2019).
Howroyd, P. C., Peter, B. & de Rijk, E. Review of Sexual Maturity in the Minipig. Toxicologic pathology 44, 607–611, https://doi.org/10.1177/0192623316642881 (2016).
doi: 10.1177/0192623316642881
pubmed: 27102651
pmcid: 27102651
Myrie, S. B., MacKay, D. S., Van Vliet, B. N. & Bertolo, R. F. Early programming of adult blood pressure in the low birth weight Yucatan miniature pig is exacerbated by a post-weaning high-salt-fat-sugar diet. British Journal of Nutrition 108, 1218–1225, https://doi.org/10.1017/S0007114511006696 (2012).
doi: 10.1017/S0007114511006696
pubmed: 22176649
pmcid: 22176649
Karwacki, M. W. & Wozniak, W. (2012).
Therasse, P. et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. Journal of the National Cancer Institute 92, 205–216, https://doi.org/10.1093/jnci/92.3.205 (2000).
doi: 10.1093/jnci/92.3.205
pubmed: 10655437
pmcid: 10655437
O’Connor, J. P. et al. Dynamic contrast-enhanced imaging techniques: CT and MRI. The British journal of radiology 84 Spec No 2, S112–120, https://doi.org/10.1259/bjr/55166688 (2011).
doi: 10.1259/bjr/55166688
pubmed: 22433822
pmcid: 22433822
Uthoff, J. et al. Radiomic biomarkers informative of cancerous transformation in neurofibromatosis-1 plexiform tumors. Journal of neuroradiology. Journal de neuroradiologie 46, 179–185, https://doi.org/10.1016/j.neurad.2018.05.006 (2019).
doi: 10.1016/j.neurad.2018.05.006
pubmed: 29958847
pmcid: 29958847
Bassi, B., Vannelli, S., Giraudo, M. C., Burdino, E. & Rigardetto, R. [Unidentified bright objects and neuropsychiatric disturbances]. Minerva pediatrica 65, 371–381 (2013).
pubmed: 24051970
pmcid: 24051970
Goh, W. H., Khong, P. L., Leung, C. S. & Wong, V. C. T2-weighted hyperintensities (unidentified bright objects) in children with neurofibromatosis 1: their impact on cognitive function. Journal of child neurology 19, 853–858, https://doi.org/10.1177/08830738040190110201 (2004).
doi: 10.1177/08830738040190110201
pubmed: 15658789
pmcid: 15658789
Hyman, S. L., Gill, D. S., Shores, E. A., Steinberg, A. & North, K. N. T2 hyperintensities in children with neurofibromatosis type 1 and their relationship to cognitive functioning. Journal of neurology, neurosurgery, and psychiatry 78, 1088–1091, https://doi.org/10.1136/jnnp.2006.108134 (2007).
doi: 10.1136/jnnp.2006.108134
pubmed: 17299016
pmcid: 17299016
Piscitelli, O., Digilio, M. C., Capolino, R., Longo, D. & Di Ciommo, V. Neurofibromatosis type 1 and cerebellar T2-hyperintensities: the relationship to cognitive functioning. Developmental medicine and child neurology 54, 49–51, https://doi.org/10.1111/j.1469-8749.2011.04139.x (2012).
doi: 10.1111/j.1469-8749.2011.04139.x
pubmed: 22107256
pmcid: 22107256
Moore, B. D., Slopis, J. M., Schomer, D., Jackson, E. F. & Levy, B. M. Neuropsychological significance of areas of high signal intensity on brain MRIs of children with neurofibromatosis. Neurology 46, 1660–1668, https://doi.org/10.1212/wnl.46.6.1660 (1996).
doi: 10.1212/wnl.46.6.1660
pubmed: 8649566
pmcid: 8649566
Chabernaud, C. et al. Thalamo-Striatal T2-Weighted Hyperintensities (Unidentified Bright Objects) Correlate With Cognitive Impairments in Neurofibromatosis Type 1 During Childhood. Developmental Neuropsychology 34, 736–748, https://doi.org/10.1080/87565640903265137 (2009).
doi: 10.1080/87565640903265137
pubmed: 20183730
pmcid: 20183730
Clark, S. G. & Althouse, G. C. B-mode ultrasonographic examination of the accessory sex glands of boars. Theriogenology 57, 2003–2013 (2002).
doi: 10.1016/S0093-691X(02)00698-2
pubmed: 12066861
pmcid: 12066861
Dombi, E. et al. Recommendations for imaging tumor response in neurofibromatosis clinical trials. Neurology 81, S33–40, https://doi.org/10.1212/01.wnl.0000435744.57038.af (2013).
doi: 10.1212/01.wnl.0000435744.57038.af
pubmed: 24249804
pmcid: 24249804
Ahlawat, S. et al. Current whole-body MRI applications in the neurofibromatoses: NF1, NF2, and schwannomatosis. Neurology 87, S31–39, https://doi.org/10.1212/wnl.0000000000002929 (2016).
doi: 10.1212/wnl.0000000000002929
pubmed: 27527647
pmcid: 27527647
Hauser, R., Smolinski, J. & Gos, T. The estimation of stature on the basis of measurements of the femur. Forensic science international 147, 185–190, https://doi.org/10.1016/j.forsciint.2004.09.070 (2005).
doi: 10.1016/j.forsciint.2004.09.070
pubmed: 15567625
pmcid: 15567625
Feldesman, M. R. Femur/stature ratio and estimates of stature in children. American journal of physical anthropology 87, 447–459, https://doi.org/10.1002/ajpa.1330870406 (1992).
doi: 10.1002/ajpa.1330870406
pubmed: 1580352
pmcid: 1580352
Stalvey, M. S. et al. Reduced bone length, growth plate thickness, bone content, and IGF-I as a model for poor growth in the CFTR-deficient rat. PloS one 12, e0188497, https://doi.org/10.1371/journal.pone.0188497 (2017).
doi: 10.1371/journal.pone.0188497
pubmed: 29190650
pmcid: 29190650
Rogan, M. P. et al. Pigs and humans with cystic fibrosis have reduced insulin-like growth factor 1 (IGF1) levels at birth. Proceedings of the National Academy of Sciences of the United States of America 107, 20571–20575, https://doi.org/10.1073/pnas.1015281107 (2010).
doi: 10.1073/pnas.1015281107
pubmed: 21059918
pmcid: 21059918
Faria, L. P. G., Rodrigues, Ld. O., Diniz, L. M. & Rezende, N. A. d. & Rodrigues, L. O. C. Prevalência de um fenotipo inédito na Neurofibromatose do Tipo 1-Dados preliminares. Revista Médica de Minas Gerais 22, 363–368 (2012).
Eggleston, T. A. et al. Comparison of two porcine (Sus scrofa domestica) skin models for in vivo near-infrared laser exposure. Comparative medicine 50, 391–397 (2000).
pubmed: 11020157
pmcid: 11020157
Shah, K. N. The diagnostic and clinical significance of cafe-au-lait macules. Pediatric clinics of North America 57, 1131–1153, https://doi.org/10.1016/j.pcl.2010.07.002 (2010).
doi: 10.1016/j.pcl.2010.07.002
pubmed: 20888463
pmcid: 20888463
Yang, C. C., Happle, R., Chao, S. C., Yu-Yun Lee, J. & Chen, W. Giant cafe-au-lait macule in neurofibromatosis 1: a type 2 segmental manifestation of neurofibromatosis 1? Journal of the American Academy of Dermatology 58, 493–497, https://doi.org/10.1016/j.jaad.2007.03.013 (2008).
doi: 10.1016/j.jaad.2007.03.013
pubmed: 18280349
pmcid: 18280349
Tong, H. X., Li, M., Zhang, Y., Zhu, J. & Lu, W. Q. A novel NF1 mutation in a Chinese patient with giant cafe-au-lait macule in neurofibromatosis type 1 associated with a malignant peripheral nerve sheath tumor and bone abnormality. Genetics and molecular research: GMR 11, 2972–2978, https://doi.org/10.4238/2012.July.10.6 (2012).
doi: 10.4238/2012.July.10.6
pubmed: 22869071
pmcid: 22869071
Choudhary, S. V., Dhope, A. A., Singh, R. & Tidke, P. Plexiform Neurofibroma Overlying Giant Cafe-au-lait Macule. Indian dermatology online journal 8, 159–160, https://doi.org/10.4103/2229-5178.202270 (2017).
doi: 10.4103/2229-5178.202270
pubmed: 28405569
pmcid: 28405569
Wells, D. Animal cloning: problems and prospects. Revue Scientifique Et Technique-Office International Des Epizooties 24, 251 (2005).
doi: 10.20506/rst.24.1.1566
Carroll, J., Carter, B., Korte, S., Dowd, S. & Prather, R. The acute-phase response of cloned pigs following an immune challenge. Vol. 83 (2005).
Wang, W. et al. Mice lacking Nf1 in osteochondroprogenitor cells display skeletal dysplasia similar to patients with neurofibromatosis type I. Human molecular genetics 20, 3910–3924, https://doi.org/10.1093/hmg/ddr310 (2011).
doi: 10.1093/hmg/ddr310
pubmed: 21757497
pmcid: 21757497
Geeraerts, T. et al. Use of T2-weighted magnetic resonance imaging of the optic nerve sheath to detect raised intracranial pressure. Critical care (London, England) 12, R114, https://doi.org/10.1186/cc7006 (2008).
doi: 10.1186/cc7006
Meyerholz, D. K. et al. Immunohistochemical Markers for Prospective Studies in Neurofibromatosis-1 Porcine Models. The journal of histochemistry and cytochemistry: official journal of the Histochemistry Society 65, 607–618, https://doi.org/10.1369/0022155417729357 (2017).
doi: 10.1369/0022155417729357
Meyerholz, D. K. & Beck, A. P. Principles and approaches for reproducible scoring of tissue stains in research. Laboratory investigation; a journal of technical methods and pathology 98, 844–855, https://doi.org/10.1038/s41374-018-0057-0 (2018).
doi: 10.1038/s41374-018-0057-0
pubmed: 29849125
pmcid: 29849125
Tu, W. et al. Evaluation of a free-breathing respiratory-triggered (Navigator) 3-D T1-weighted (T1W) gradient recalled echo sequence (LAVA) for detection of enhancement in cystic and solid renal masses. European radiology 29, 2507–2517, https://doi.org/10.1007/s00330-018-5839-7 (2019).
doi: 10.1007/s00330-018-5839-7
pubmed: 30506224
pmcid: 30506224
Mann, H. B. & Whitney, D. R. On a test of whether one of two random variables is stochastically larger than the other. The annals of mathematical statistics, 50-60 (1947).
Hopkins, K. D. & Glass, G. V. Research design and analysis clinic: The analysis of repeated measures and other mixed-model ANOVA designs. The Journal of Special Education 6, 185–188 (1972).
doi: 10.1177/002246697200600211
Lin, L. I. A concordance correlation coefficient to evaluate reproducibility. Biometrics 45, 255–268 (1989).
doi: 10.2307/2532051
pubmed: 2720055
pmcid: 2720055