Presence of Qac genes in clinical isolates of methicillin-resistant and methicillin-susceptible Staphylococcus pseudintermedius and their impact on chlorhexidine digluconate susceptibility.
Journal
Veterinary surgery : VS
ISSN: 1532-950X
Titre abrégé: Vet Surg
Pays: United States
ID NLM: 8113214
Informations de publication
Date de publication:
Jul 2020
Jul 2020
Historique:
received:
07
09
2019
revised:
23
02
2020
accepted:
01
03
2020
pubmed:
21
3
2020
medline:
18
11
2020
entrez:
21
3
2020
Statut:
ppublish
Résumé
To evaluate the presence of quaternary ammonium compound (QAC) (resistance genes, qac A/B, smr, qacG, and qacJ, in clinical isolates of methicillin-susceptible Staphylococcus pseudintermedius (MSSP) and methicillin-resistant S pseudintermedius (MRSP) from dogs and the impact on in vitro chlorhexidine susceptibility. Experimental in vitro study. Seventy isolates from dogs colonized or infected with MRSP (n = 50) or MSSP (n = 20). Agar dilution was used to determine the minimum inhibitory concentration (MIC) of chlorhexidine digluconate. Real-time polymerase chain reaction was used to detect the presence of QAC resistance genes, qacA/B, smr, qacG, and qacJ genes. One or more qac genes were identified in 52 of 70 (74%) isolates. Overall, there was no association between chlorhexidine MIC and the presence of one or more qac genes (P = .85) or the presence of qacA/B (P = .31), smr (P = .72) or qacJ (P = .93) individually. There was an association between qacG and MIC (P = .012), with a median MIC of 1.5 μg/mL for isolates possessing this gene and 1 μg/mL for those not possessing it. Quaternary ammonium compound resistance genes were present in MRSP and MSSP isolates. With the exception of qacG, the presence of these genes was not associated with increased MIC. All isolates exhibited MIC 5000 to 80 000 times lower than the concentration recommended for use. Despite the presence of QAC genes, chlorhexidine digluconate should be effective against MRSP and MSSP if used correctly.
Substances chimiques
Anti-Bacterial Agents
0
chlorhexidine gluconate
MOR84MUD8E
Methicillin
Q91FH1328A
Chlorhexidine
R4KO0DY52L
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
971-976Informations de copyright
© 2020 The American College of Veterinary Surgeons.
Références
Vasseur PB, Paul HA, Enos LR, Hirsh DH. Infection rates in clean surgical procedures: a comparison of ampicillin prophylaxis vs a placebo. J Am Vet Med Assoc. 1985;187(8):825-827.
Eugster S, Schawalder P, Gaschen F, Boerlin P. A prospective study of postoperative surgical site infections in dogs and cats. Vet Surg. 2004;33(5):542-550. https://doi.org/10.1111/j.1532-950X.2004.04076.x.
Nicholson M, Beal M, Shofer F, Brown DC. Epidemiologic evaluation of postoperative wound infection in clean-contaminated wounds: a retrospective study of 239 dogs and cats. Vet Surg. 2002;31(6):577-581. https://doi.org/10.1053/jvet.2002.34661.
Frey TN, Hoelzler MG, Scavelli TD, Fulcher RP, Bastian RP. Risk factors for surgical site infection-inflammation in dogs undergoing surgery for rupture of the cranial cruciate ligament: 902 cases (2005-2006). J Am Vet Med Assoc. 2010;236(1):88-94. https://doi.org/10.2460/javma.236.1.88.
Verwilghen D, Singh A. Fighting surgical site infections in small animals. Are we getting anywhere? Vet Clin North Am Small Anim Pract. 2015;45(2):243-276. https://doi.org/10.1016/j.cvsm.2014.11.001.
Singh A, Walker M, Rousseau J, Weese JS. Characterization of the biofilm forming ability of Staphylococcus pseudintermedius from dogs. BMC Vet Res. 2013;9:93. https://doi.org/10.1186/1746-6148-9-93.
Turk R, Singh A, Weese JS. Prospective surgical site infection surveillance in dogs. Vet Surg. 2015;4(1):2-8. https://doi.org/10.1111/j.1532-950X.2014.12267.x.
Weese JS. A review of multidrug resistant surgical site infections. Vet Comp Orthop Traumatol. 2008;21(1):1-7.
Perreten V, Kadlec K, Schwarz S, et al. Clonal spread of methicillin-resistant Staphylococcus pseudintermedius in Europe and North America: an international multicentre study. J Antimicrob Chemother. 2010;65(6):1145-1154. https://doi.org/10.1093/jac/dkq078.
Mangram AJ, Horan TC, Pearson ML, Silver LC, Jarvis WR. Guideline for Prevention of Surgical Site Infection, 1999. Hospital Infection Control Practices Advisory Committee. Infect Control Hosp Epidemiol. 1999;20(4):97-134.
Prag G, Falk-Brynhildsen K, Jacobsson S, Hellmark B, Unemo M, Söderquist B. Decreased susceptibility to chlorhexidine and prevalence of disinfectant resistance genes among clinical isolates of Staphylococcus epidermidis. APMIS. 2014;122(10):961-967. https://doi.org/10.1111/apm.12239.
Hsieh HF, Chiu HH, Lee FP. Surgical hand scrubs in relation to microbial counts: systematic literature review. J Adv Nurs. 2006;55(1):68-78. https://doi.org/10.1111/j.1365-2648.2006.03876.x.
Lambrechts NE, Hurter K, Picard JA, Goldin JP, Thompson PN. A prospective comparison between stabilized glutaraldehyde and chlorhexidine gluconate for preoperative skin antisepsis in dogs. Vet Surg. 2004;33(6):636-643. https://doi.org/10.1111/j.1532-950X.2004.04086.x.
Cho O-H, Park K-H, Song JY, et al. Prevalence and microbiological characteristics of qacA/B-positive methicillin-resistant Staphylococcus aureus isolates in a surgical intensive care unit. Microb Drug Resist. 2018;24(3):283-289. https://doi.org/10.1089/mdr.2017.0072.
Skovgaard S, Larsen MH, Nielsen LN, et al. Recently introduced qacA/B genes in Staphylococcus epidermidis do not increase chlorhexidine MIC/MBC. J Antimicrob Chemother. 2013;68(10):2226-2233. https://doi.org/10.1093/jac/dkt182.
Liu Q, Zhao H, Han L, Shu W, Wu Q, Ni Y. Frequency of biocide-resistant genes and susceptibility to chlorhexidine in high-level mupirocin-resistant, methicillin-resistant Staphylococcus aureus (MuH MRSA). Diagn Microbiol Infect Dis. 2015;82(4):278-283. https://doi.org/10.1016/j.diagmicrobio.2015.03.023.
Smith K, Gemmell CG, Hunter IS. The association between biocide tolerance and the presence or absence of qac genes among hospital-acquired and community-acquired MRSA isolates. J Antimicrob Chemother. 2008;61(1):78-84. https://doi.org/10.1093/jac/dkm395.
Couto N, Belas A, Couto I, Perreten V, Pomba C. Genetic relatedness, antimicrobial and biocide susceptibility comparative analysis of methicillin-resistant and -susceptible Staphylococcus pseudintermedius from Portugal. Microb Drug Resist. 2014;20(4):364-371. https://doi.org/10.1089/mdr.2013.0043.
Worthing KA, Marcus A, Abraham S, Trott DJ, Norris JM. Qac genes and biocide tolerance in clinical veterinary methicillin-resistant and methicillin-susceptible Staphylococcus aureus and Staphylococcus pseudintermedius. Vet Microbiol. 2018;216:153-158. https://doi.org/10.1016/j.vetmic.2018.02.004.
Kadlec K, Schwarz S, Goering RV, Weese JS. Direct repeat unit (dru) typing of methicillin-resistant Staphylococcus pseudintermedius from dogs and cats. J Clin Microbiol. 2015;53(12):3760-3765. https://doi.org/10.1128/JCM.01850-15.
Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. 11th ed. Wayne, PA: CLSI; 1990.
Maillard J-Y. Emergence of bacterial resistance to microbicides and antibiotics. Microbiol Australia. 2010;159-164.
Cheeseman KE, Denyer SP, Hosein IK, Williams GJ, Maillard JY. Evaluation of the bactericidal efficacy of three different alcohol hand rubs against 57 clinical isolates of S. aureus. J Hosp Infect. 2009;72(4):319-325. https://doi.org/10.1016/j.jhin.2009.04.018.
Wesgate R, Grasha P, Maillard JY. Use of a predictive protocol to measure the antimicrobial resistance risks associated with biocidal product usage. Am J Infect Control. 2016;44(4):458-464. https://doi.org/10.1016/j.ajic.2015.11.009.
Zmantar T, Kouidhi B, Miladi H, Bakhrouf A. Detection of macrolide and disinfectant resistance genes in clinical Staphylococcus aureus and coagulase-negative staphylococci. BMC Res Notes. 2011;4. https://doi.org/10.1186/1756-0500-4-453.
Murayama N, Nagata M, Terada Y, et al. In vitro antiseptic susceptibilities for Staphylococcus pseudintermedius isolated from canine superficial pyoderma in Japan. Vet Dermatol. 2013;24(1):137-140. https://doi.org/10.1111/j.1365-3164.2012.01103.x.
Kõljalg S, Naaber P, Mikelsaar M. Antibiotic resistance as an indicator of bacterial chlorhexidine susceptibility. J Hosp Infect. 2002;51(2):106-113. https://doi.org/10.1053/jhin.2002.1204.
Suller MTE, Russell AD. Antibiotic and biocide resistance in Staphylococcus aureus and vancomycin-resistant enterococcus. J Hosp Infect. 1999;43(4):281-291.
Irizarry L, Merlin T, Rupp J, Griffith J. Reduced susceptibility of methicillin-resistant Staphylococcus aureus to cetylpyridinium chloride and chlorhexidine. Chemotherapy. 1996;42(4):248-252. https://doi.org/10.1159/000239451.
Clark SM, Loeffler A, Bond R. Susceptibility in vitro of canine methicillin-resistant and-susceptible staphylococcal isolates to fusidic acid, chlorhexidine and miconazole: opportunities for topical therapy of canine superficial pyoderma. J Antimicrob Chemother. 2015;70(7):2048-2052. https://doi.org/10.1093/jac/dkv056.
Valentine BK, Dew W, Yu A, Weese JS. In vitro evaluation of topical biocide and antimicrobial susceptibility of Staphylococcus pseudintermedius from dogs. Vet Dermatol. 2012;23(6). https://doi.org/10.1111/j.1365-3164.2012.01095.x.