Is Niagara Falls a barrier to gene flow in riverine fishes? A test using genome-wide SNP data from seven native species.
fish
fisheries management
genomics/proteomics
invasive species
landscape genetics
population genetics - empirical
Journal
Molecular ecology
ISSN: 1365-294X
Titre abrégé: Mol Ecol
Pays: England
ID NLM: 9214478
Informations de publication
Date de publication:
04 2020
04 2020
Historique:
received:
21
01
2019
revised:
17
02
2020
accepted:
20
02
2020
pubmed:
24
3
2020
medline:
2
3
2021
entrez:
24
3
2020
Statut:
ppublish
Résumé
Since the early Holocene, fish population genetics in the Laurentian Great Lakes have been shaped by the dual influences of habitat structure and post-glacial dispersal. Riverscape genetics theory predicts that longitudinal habitat corridors and unidirectional downstream water-flow drive the downstream accumulation of genetic diversity, whereas post-glacial dispersal theory predicts that fish genetic diversity should decrease with increasing distance from glacial refugia. This study examines populations of seven native fish species codistributed above and below the 58 m high Niagara Falls - a hypothesized barrier to gene flow in aquatic species. A better understanding of Niagara Falls' role as a barrier to gene flow and dispersal is needed to identify drivers of Great Lakes genetic diversity and guide strategies to limit exotic species invasions. We used genome-wide SNPs and coalescent models to test whether populations are: (a) genetically distinct, consistent with the Niagara Falls barrier hypothesis; (b) more genetically diverse upstream, consistent with post-glacial expansion theory, or downstream, consistent with the riverscape habitat theory; and (c) have migrated either upstream or downstream past Niagara Falls. We found that genetic diversity is consistently greater below Niagara Falls and the falls are an effective barrier to migration, but two species have probably dispersed upstream past the falls after glacial retreat yet before opening of the Welland Canal. Models restricting migration to after opening of the Welland Canal were generally rejected. These results help explain how river habitat features affect aquatic species' genetic diversity and highlight the need to better understand post-glacial dispersal pathways.
Banques de données
Dryad
['10.5061/dryad.wdbrv15jn']
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1235-1249Informations de copyright
© 2020 John Wiley & Sons Ltd.
Références
April, J., Hanner, R. H., Dion-Côte, A. M., & Bernatchez, L. (2013). Glacial cycles as an allopatric speciation pump in north-eastern American freshwater fishes. Molecular Ecology, 22, 409-422. https://doi.org/10.1111/mec.12116
April, J., & Turgeon, J. (2006). Phylogeography of the banded killifish (Fundulus diaphanus): Glacial races and secondary contact. Journal of Fish Biology, 69, 212-228. https://doi.org/10.1111/j.1095-8649.2006.01233.x
Bailey, R. M., & Smith, G. R. (1981). Origin and geography of the fish fauna of the Laurentian Great Lakes basin. Canadian Journal of Fisheries and Aquatic Sciences, 38, 1539-1561. https://doi.org/10.1139/f81-206
Barrera-Guzman, A. O., Aleixo, A., Shawkey, M. D., & Weir, J. T. (2018). Hybrid speciation leads to novel male secondary sexual ornamentation of an Amazonian bird. Proceedings of the National Academy of Sciences of the United States of America, 115, E218-E225. https://doi.org/10.1073/pnas.1717319115
Bhatia, G., Patterson, N., Sankararaman, S., & Price, A. L. (2013). Estimating and interpreting Fst: The impact of rare variants. Genome Research, 23, 1514-1521. https://doi.org/10.1101/gr.154831.113
Calkin, P. E., & Feenstra, B. H. (1985). Evolution of the Erie-Basin Great Lakes. In P. F. Karrow, & P. E. Calkin (Eds.), Quaternary evolution of the Great Lakes (pp. 149-170). St. John's, NL: Geological Association of Canada Special Paper 30.
Carrara, F., Altermatt, F., Rodriguez-Iturbe, I., & Rinaldo, A. (2012). Dendritic connectivity controls biodiversity patterns in experimental metacommunities. Proceedings of the National Academy of Sciences of the United States of America, 109, 5761-5766. https://doi.org/10.1073/pnas.1119651109
Coker, G. A., Portt, C. B., & Minns, C. K. (2001). Morphological and ecological characteristics of Canadian freshwater fishes. Burlington, ON: Fisheries and Oceans Canada.
Dyke, A. S., Moore, A., & Robertson, L. (2003). Deglaciation of North America. Ottawa, ON: Geological Survey of Canada.
Eaton, D. A. R. (2014). PyRAD: Assembly of de novo RADseq loci for phylogenetic analyses. Bioinformatics, 30, 1844-1849. https://doi.org/10.1093/bioinformatics/btu121
Elderkin, C. L., Christhian, A. D., Vaughn, C. C., Metcalfe-Smith, J. L., & Berg, D. J. (2007). Population genetics of the freshwater mussel, Amblema plicata (Say 1817) (Bivalvia: Unionidae): Evidence of high dispersal and post-glacial colonization. Conservation Genetics, 8, 355-372. https://doi.org/10.1007/s10592-006-9175-0
Excoffier, L., Dupanloup, I., Huerta-Sánchez, E., Sousa, V. C., & Foll, M. (2013). Robust demographic inference from genomic and SNP data. PLOS Genetics, 9, e1003905. https://doi.org/10.1371/journal.pgen.1003905
Excoffier, L., & Lischer, H. E. L. (2010). Arlequin suite v3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10, 564-567.
Frantz, A. C., Cellina, S., Krier, A., Schley, L., & Burke, T. (2009). Using spatial Bayesian methods to determine the genetic structure of a continuously distributed population: Clusters or isolation by distance? Journal of Applied Ecology, 46, 493-505. https://doi.org/10.1111/j.1365-2664.2008.01606.x
Fuller, M. R., Doyle, M. W., & Strayer, D. L. (2015). Causes and consequences of habitat fragmentation in river networks. Annals of the New York Academy of Sciences, 1355, 31-51.
Garner, T. W. J., Pearman, P. B., & Angelone, S. (2004). Genetic diversity across a vertebrate species' range: A test of the central-peripheral hypothesis. Molecular Ecology, 13, 1047-1053. https://doi.org/10.1111/j.1365-294X.2004.02119.x
Ginson, R., Walter, R. P., Mandrak, N. E., Beneteau, C. L., & Heath, D. D. (2015). Hierarchical analysis of genetic structure in the habitat-specialist Eastern Sand Darter (Ammocrypta pellucida). Ecology and Evolution, 5, 695-708.
Glenn, T. C., Bayona-Vásquez, N. J., Kieran, T. J., Pierson, T. W., Hoffberg, S. L., Scott, P. A., … Faircloth, B. C. (2017). Adapterama III: Quadruple-indexed, triple-enzyme RADseq libraries for about $1USD per sample (3RAD). bioRxiv, 205799.
Gordon, A., & Hannon, G. J. (2010). “Fastx-toolkit”. FASTQ/A short-reads preprocessing tools (unpublished) http://hannonlab. cshl.edu/fastx_toolkit 5.
Haag, W. R. (2012). North American freshwater mussels: Natural history, ecology, and conservation. Cambridge, UK: Cambridge University Press.
Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis v3. Palaeontologia Electronica, 4, 1-9.
Hayakawa, Y., & Matsukura, Y. (2009). Factors influencing the recession rate of Niagara Falls since the 19th century. Geomorphology, 110, 212-216. https://doi.org/10.1016/j.geomorph.2009.04.011
Hewitt, G. (2000). The genetic legacy of the Quaternary ice ages. Nature, 405, 907-913. https://doi.org/10.1038/35016000
Hewitt, T. L., Bergner, J. L., Woolnough, D. A., & Zanatta, D. T. (2018). Phylogeography of the freshwater mussel species Lasmigona costata: Testing post-glacial colonization hypotheses. Hydrobiologia, 810, 191-206. https://doi.org/10.1007/s10750-016-2834-3
Hoban, S. M., Borkowski, D. S., Brosi, S. L., McCleary, T. S., Thompson, L. M., McLachlan, J. S., … Romero-severson, J. (2010). Range-wide distribution of genetic diversity in the North American tree Juglans cinerea: A product of range shifts, not ecological marginality or recent population decline. Molecular Ecology, 19, 4876-4891. https://doi.org/10.1111/j.1365-294X.2010.04834.x
Hoffman, J. R., Morris, T. J., & Zanatta, D. T. (2018). Genetic evidence for canal-mediated dispersal of Mapleleaf, Quadrula quadrula (Bivalvia:Unionidae) on the Niagara Peninsula, Canada. Freshwater Science, 37, 82-95.
IUCN Standards and Protocols Committee (2019). Guidelines for Using the IUCN Red List Categories and Criteria. Version 14. Prepared by the Standards and Petitions Committee. Retrieved from http://www.iucnredlist.org/documents/RedListGuidelines.pdf
Keck, B. P., & Near, T. J. (2013). A new species of Nothonotus darter (Teleostei: Percidae) from the Caney Fork in Tennessee, USA. Bulletin of the Peabody Museum of Natural History, 54, 3-21.
Keenan, K., McGinnity, P., Cross, T. F., Crozier, W. W., & Prodöhl, P. A. (2013). diveRsity: An R package for the estimation and exploration of population genetics parameters and their associated errors. Methods in Ecology and Evolution, 4, 782-788.
Kim, J., & Mandrak, N. E. (2016). Assessing the potential movement of invasive fishes through the Welland Canal. Journal of Great Lakes Research, 42, 1102-1108. https://doi.org/10.1016/j.jglr.2016.07.009
Lujan, N. K., Agudelo-Zamora, H., Taphorn, D. C., Booth, P. N., & López-Fernández, H. (2013). Description of a new, narrowly endemic South American darter (Characiformes: Crenuchidae) from the central Guiana Shield highlands of Guyana. Copeia, 2013, 454-463. https://doi.org/10.1643/CI-12-079
Lujan, N. K., Armbruster, J. W., & Lovejoy, N. R. (2018). Multilocus phylogeny, diagnosis and generic revision of the Guiana Shield endemic suckermouth armored catfish tribe Lithoxini (Loricaridae: Hypostominae). Zoological Journal of the Linnean Society, 184, 1169-1186.
Mandrak, N. E., & Crossman, E. J. (1992). Postglacial dispersal of freshwater fishes into Ontario. Canadian Journal of Zoology, 70, 2247-2259. https://doi.org/10.1139/z92-302
Mandrak, N. E., & Cudmore, B. (2012). Fish species at risk and non-native fishes in the Great Lakes basin: Past, present, and future. In A. J. Lynch, W. W. Taylor, & N. J. Leonard (Eds.), Great lakes fisheries policy & management (pp. 167-202). East Lansing, MI: Michigan State University Press.
Mathias, P. T., Hoffman, J. R., Wilson, C. C., & Zanatta, D. T. (2018). Signature of postglacial colonization on contemporary genetic structure and diversity of Quadrula quadrula (Bivalvia: Unionidae). Hydrobiologia, 810, 207-225. https://doi.org/10.1007/s10750-016-3076-0
Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences of the United States of America, 70, 3321-3323. https://doi.org/10.1073/pnas.70.12.3321
Papadopoulou, A., & Knowles, L. L. (2016). Toward a paradigm shift in comparative phylogeography driven by trait-based hypotheses. Proceedings of the National Academy of Sciences of the United States of America, 113, 8018-8024. https://doi.org/10.1073/pnas.1601069113
Paz-Vinas, I., & Blanchet, S. (2015). Dendritic connectivity shapes spatial patterns of genetic diversity: A simulation-based study. Journal of Evolutionary Biology, 28, 986-994. https://doi.org/10.1111/jeb.12626
Paz-Vinas, I., Loot, G., Stevens, V. M., & Blanchet, S. (2015). Evolutionary processes driving spatial patterns of intraspecific genetic diversity in river ecosystems. Molecular Ecology, 24, 4586-4604. https://doi.org/10.1111/mec.13345
Ponce, M., van Zon, R., Northrup, S., Gruner, D., Chen, J., Ertinaz, F., … Peltier, W. R. (2019). Deploying a Top-100 Supercomputer for Large Parallel Workloads: The Niagara Supercomputer. arXiv:1907.13600 [cs.DC] https://doi.org/10.1145/3332186.3332195
Portt, C. B., Minns, C. K., & King, S. W. (1988). Morphological and ecological characteristics of common fishes in Ontario Lakes. Burlington, ON: Department of Fisheries and Oceans.
Randall, R. G., & Minns, C. K. (2000). Use of fish production per unit biomass ratios for measuring the productive capacity of fish habitats. Canadian Journal of Fisheries and Aquatic Sciences, 57, 1657-1667.
Thomaz, A. T., Christie, M. R., & Knowles, L. L. (2016). The architecture of river networks can drive the evolutionary dynamics of aquatic populations. Evolution, 70, 731-739. https://doi.org/10.1111/evo.12883
Tinkler, K. J., Pengelly, J. W., Parkins, W. G., & Asselin, G. (1994). Postglacial recession of Niagara Falls in Relation to the Great Lakes. Quaternary Research, 42, 20-29. https://doi.org/10.1006/qres.1994.1050
Vucetich, J. A., & White, T. A. (2003). Spatial patterns of demography and genetic processes across the species range: Null hypotheses for landscape conservation genetics. Conservation Genetics, 4, 639-645.
Weir, B. S., & Cockerham, C. C. (1984). Estimating F-statistics for the analysis of population structure. Evolution, 38, 1358-1370.
Winemiller, K. O., López Fernández, H., Taphorn, D. C., Nico, L. G., & Barbarino Duque, A. (2008). Fish assemblages of the Casiquiare River, a corridor and zoogeographic filter for dispersal between the Orinoco and Amazon basins. Journal of Biogeography, 35, 1551-1563.
Wofford, J. E. B., Gresswell, R. E., & Banks, M. A. (2005). Influence of barriers to movement on within-watershed genetic variation of coastal cutthroat trout. Ecological Applications, 15, 628-637. https://doi.org/10.1890/04-0095