Self-perpetuating ecological-evolutionary dynamics in an agricultural host-parasite system.


Journal

Nature ecology & evolution
ISSN: 2397-334X
Titre abrégé: Nat Ecol Evol
Pays: England
ID NLM: 101698577

Informations de publication

Date de publication:
05 2020
Historique:
received: 31 07 2019
accepted: 21 02 2020
pubmed: 24 3 2020
medline: 31 7 2020
entrez: 24 3 2020
Statut: ppublish

Résumé

Ecological and evolutionary processes may become intertwined when they operate on similar time scales. Here we show ecological-evolutionary dynamics between parasitoids and aphids containing heritable symbionts that confer resistance against parasitism. In a large-scale field experiment, we manipulated the aphid's host plant to create ecological conditions that either favoured or disfavoured the parasitoid. The result was rapid evolutionary divergence of aphid resistance between treatment populations. Consistent with ecological-evolutionary dynamics, the resistant aphid populations then had reduced parasitism and increased population growth rates. We fit a model to quantify costs (reduced intrinsic rates of increase) and benefits of resistance. We also performed genetic assays on 5 years of field samples that showed persistent but highly variable frequencies of aphid clones containing protective symbionts; these patterns were consistent with simulations from the model. Our results show (1) rapid evolution that is intertwined with ecological dynamics and (2) variation in selection that prevents traits from becoming fixed, which together generate self-perpetuating ecological-evolutionary dynamics.

Identifiants

pubmed: 32203477
doi: 10.1038/s41559-020-1155-0
pii: 10.1038/s41559-020-1155-0
doi:

Banques de données

figshare
['10.6084/m9.figshare.11828865.v1']

Types de publication

Journal Article Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

702-711

Commentaires et corrections

Type : CommentIn

Références

Kingsolver, J. G. et al. The strength of phenotypic selection in natural populations. Am. Nat. 157, 245–261 (2001).
pubmed: 18707288 doi: 10.1086/319193
Endler, J. A. Natural Selection in the Wild (Princeton Univ. Press, 1986).
Thompson, J. N. Rapid evolution as an ecological process. Trends Ecol. Evol. 13, 329–332 (1998).
pubmed: 21238328 doi: 10.1016/S0169-5347(98)01378-0
Schoener, T. W. The newest synthesis: understanding the interplay of evolutionary and ecological dynamics. Science 331, 426–429 (2011).
pubmed: 21273479 doi: 10.1126/science.1193954
Pelletier, F., Garant, D. & Hendry, A. P. Eco-evolutionary dynamics. Phil. Trans. R. Soc. Lond. B 364, 1483–1489 (2009).
doi: 10.1098/rstb.2009.0027
Hairston, N. G., Ellner, S. P., Geber, M. A., Yoshida, T. & Fox, J. A. Rapid evolution and the convergence of ecological and evolutionary time. Ecol. Lett. 8, 1114–1127 (2005).
doi: 10.1111/j.1461-0248.2005.00812.x
Nosil, P. et al. Natural selection and the predictability of evolution in Timema stick insects. Science 359, 765–770 (2018).
pubmed: 29449486 doi: 10.1126/science.aap9125
Auld, S. K. J. R. et al. Variation in costs of parasite resistance among natural host populations. J. Evol. Biol. 26, 2479–2486 (2013).
pubmed: 24118613 doi: 10.1111/jeb.12243
Duffy, M. A. et al. Ecological context influences epidemic size and parasite-driven evolution. Science 335, 1636–1638 (2012).
pubmed: 22461614 doi: 10.1126/science.1215429
Travis, J. et al. in Eco-Evolutionary Dynamics Vol. 50 (eds Moya-Laraño, J. et al.) 1–40 (Academic Press, 2014).
Schaffner, L. R. et al. Consumer-resource dynamics is an eco-evolutionary process in a natural plankton community. Nat. Ecol. Evol. 3, 1351–1358 (2019).
pubmed: 31427731 doi: 10.1038/s41559-019-0960-9 pmcid: 31427731
De Meester, L. et al. Analysing eco-evolutionary dynamics: the challenging complexity of the real world. Funct. Ecol. 33, 43–59 (2019).
doi: 10.1111/1365-2435.13261
Yoshida, T., Jones, L. E., Ellner, S. P., Fussmann, G. F. & Hairston, N. G. Rapid evolution drives ecological dynamics in a predator–prey system. Nature 424, 303–306 (2003).
pubmed: 12867979 doi: 10.1038/nature01767
Papkou, A. et al. The genomic basis of Red Queen dynamics during rapid reciprocal host–pathogen coevolution. Proc. Natl Acad. Sci. USA 116, 923–928 (2019).
pubmed: 30598446 doi: 10.1073/pnas.1810402116 pmcid: 30598446
Saccheri, I. & Hanski, I. Natural selection and population dynamics. Trends Ecol. Evol. 21, 341–347 (2006).
pubmed: 16769435 doi: 10.1016/j.tree.2006.03.018 pmcid: 16769435
Govaert, L. et al. Eco-evolutionary feedbacks—theoretical models and perspectives. Funct. Ecol. 33, 13–30 (2019).
doi: 10.1111/1365-2435.13241
Siepielski, A. M., DiBattista, J. D. & Carlson, S. M. It’s about time: the temporal dynamics of phenotypic selection in the wild. Ecol. Lett. 12, 1261–1276 (2009).
pubmed: 19740111 doi: 10.1111/j.1461-0248.2009.01381.x pmcid: 19740111
Carroll, S. P., Hendry, A. P., Reznick, D. N. & Fox, C. W. Evolution on ecological time-scales. Funct. Ecol. 21, 387–393 (2007).
doi: 10.1111/j.1365-2435.2007.01289.x
Lankau, R. A., Nuzzo, V., Spyreas, G. & Davis, A. S. Evolutionary limits ameliorate the negative impact of an invasive plant. Proc. Natl Acad. Sci. USA 106, 15362–15367 (2009).
pubmed: 19706431 doi: 10.1073/pnas.0905446106 pmcid: 19706431
van den Bosch, R., Schlinger, E. I., Hall, J. C. & Puttler, B. Studies on succession, distribution and phenology of imported parasites of Therioaphis trifolii (Monell) in southern California. Ecology 45, 602–621 (1964).
doi: 10.2307/1936112
Mackauer, M. Growth and developmental interactions in some aphids and their hymenopterous parasites. J. Insect Physiol. 32, 275–280 (1986).
doi: 10.1016/0022-1910(86)90039-9
Oliver, K. M., Degnan, P. H., Burke, G. R. & Moran, N. A. Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. Annu. Rev. Entomol. 55, 247–266 (2010).
pubmed: 19728837 doi: 10.1146/annurev-ento-112408-085305 pmcid: 19728837
Oliver, K. M., Russell, J. A., Moran, N. A. & Hunter, M. S. Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc. Natl Acad. Sci. USA 100, 1803–1807 (2003).
pubmed: 12563031 doi: 10.1073/pnas.0335320100 pmcid: 12563031
Meisner, M. H., Harmon, J. P. & Ives, A. R. Temperature effects on long-term population dynamics in a parasitoid-host system. Ecol. Monogr. 84, 457–476 (2014).
doi: 10.1890/13-1933.1
Snyder, W. E. & Ives, A. R. Interactions between specialist and generalist natural enemies: parasitoids, predators, and pea aphid biocontrol. Ecology 84, 91–107 (2003).
doi: 10.1890/0012-9658(2003)084[0091:IBSAGN]2.0.CO;2
Ives, A. R. & Settle, W. H. Metapopulation dynamics and pest control in agricultural systems. Am. Nat. 149, 220–246 (1997).
doi: 10.1086/285988
Bender, E. A., Case, T. J. & Gilpin, M. E. Perturbation experiments in community ecology: theory and practice. Ecology 65, 1–13 (1984).
doi: 10.2307/1939452
Oliver, K. M. & Higashi, C. H. V. Variations on a protective theme: Hamiltonella defensa infections in aphids variably impact parasitoid success. Curr. Opin. Insect Sci. 32, 1–7 (2019).
pubmed: 31113620 doi: 10.1016/j.cois.2018.08.009 pmcid: 31113620
Martinez, A. J., Doremus, M. R., Kraft, L. J., Kim, K. L. & Oliver, K. M. Multi-modal defences in aphids offer redundant protection and increased costs likely impeding a protective mutualism. J. Anim. Ecol. 87, 464–477 (2018).
pubmed: 28378393 doi: 10.1111/1365-2656.12675 pmcid: 28378393
Oliver, K. M., Degnan, P. H., Hunter, M. S. & Moran, N. A. Bacteriophages encode factors required for protection in a symbiotic mutualism. Science 325, 992–994 (2009).
pubmed: 19696350 pmcid: 5473335 doi: 10.1126/science.1174463
Martinez, A. J., Kim, K. L., Harmon, J. P. & Oliver, K. M. Specificity of multi-modal aphid defenses against two rival parasitoids. PLoS ONE 11, e0154670 (2016).
Rock, D. I. et al. Context-dependent vertical transmission shapes strong endosymbiont community structure in the pea aphid, Acyrthosiphon pisum. Mol. Ecol. 27, 2039–2056 (2018).
pubmed: 29215202 doi: 10.1111/mec.14449
Doremus, M. R. & Oliver, K. M. Aphid heritable symbiont exploits defensive mutualism. Appl. Environ. Microbiol. 83, AEM.03276-16 (2017).
Oliver, K. M., Smith, A. H. & Russell, J. A. Defensive symbiosis in the real world—advancing ecological studies of heritable, protective bacteria in aphids and beyond. Funct. Ecol. 28, 341–355 (2014).
doi: 10.1111/1365-2435.12133
Losey, J. E., Ives, A. R., Harmon, J., Brown, C. & Ballantyne, F. A polymorphism maintained by opposite patterns of parasitism and predation. Nature 388, 269–272 (1997).
doi: 10.1038/40849
Harmon, J., Losey, J. & Ives, A. R. The use of color vision in Coccinellidae. Oecologia 115, 287–292 (1998).
pubmed: 28308464 doi: 10.1007/s004420050518
Langley, S. A., Tilmon, K. J., Cardinale, B. J. & Ives, A. R. Learning by the parasitoid wasp, Aphidius ervi (Hymenoptera: Braconidae) alters individual fixed preferences for pea aphid color morphs. Oecologia 150, 172–179 (2006).
pubmed: 16858585 doi: 10.1007/s00442-006-0486-0
Tomasetto, F., Tylianakis, J. M., Reale, M., Wratten, S. & Goldson, S. L. Intensified agriculture favors evolved resistance to biological control. Proc. Natl Acad. Sci. USA 114, 3885–3890 (2017).
pubmed: 28289202 doi: 10.1073/pnas.1618416114
Hufbauer, R. A. & Roderick, G. K. Microevolution in biological control: mechanisms, patterns, and processes. Biol. Control 35, 227–239 (2005).
doi: 10.1016/j.biocontrol.2005.04.004
Mills, N. J. Rapid evolution of resistance to parasitism in biological control. Proc. Natl Acad. Sci. USA 114, 3792–3794 (2017).
pubmed: 28341708 doi: 10.1073/pnas.1702753114
Vorburger, C. & Perlman, S. J. The role of defensive symbionts in host–parasite coevolution. Biol. Rev. Camb. Philos. Soc. 93, 1747–1764 (2018).
pubmed: 29663622 doi: 10.1111/brv.12417
Caltagirone, L. E. Landmark examples in classical biological control. Annu. Rev. Entomol. 26, 213–232 (1981).
doi: 10.1146/annurev.en.26.010181.001241
Desneux, N. et al. Intraspecific variation in facultative symbiont infection among native and exotic pest populations: potential implications for biological control. Biol. Control 116, 27–35 (2018).
doi: 10.1016/j.biocontrol.2017.06.007
Kach, H., Mathe-Hubert, H., Dennis, A. B. & Vorburger, C. Rapid evolution of symbiont-mediated resistance compromises biological control of aphids by parasitoids. Evol. Appl. 11, 220–230 (2018).
pubmed: 29387157 doi: 10.1111/eva.12532
Dennis, A. B., Patel, V., Oliver, K. M. & Vorburger, C. Parasitoid gene expression changes after adaptation to symbiont-protected hosts. Evolution 71, 2599–2617 (2017).
pubmed: 28841224 doi: 10.1111/evo.13333
Barbosa, P. in Conservation Biological Control (ed. Barbosa, P.) 39–54 (Academic Press, 1998).
Snyder, W. E., Chang, G. C. & Prasad, R. P. in Ecology of Predator–Prey Interactions (eds Barbosa, P. & Castellanos, I.) 324–343 (Oxford Univ. Press, 2004).
Tscharntke, T. et al. When natural habitat fails to enhance biological pest control—five hypotheses. Biol. Conserv. 204, 449–458 (2016).
doi: 10.1016/j.biocon.2016.10.001
Oliver, K. M., Campos, J., Moran, N. A. & Hunter, M. S. Population dynamics of defensive symbionts in aphids. Proc. R. Soc. B 275, 293–299 (2008).
pubmed: 18029301 doi: 10.1098/rspb.2007.1192
Lynn-Bell, N. L., Strand, M. R. & Oliver, K. M. Bacteriophage acquisition restores protective mutualism. Microbiology 165, 985–989 (2019).
pubmed: 31140970 doi: 10.1099/mic.0.000816 pmcid: 31140970
Henry, L. M. et al. Horizontally transmitted symbionts and host colonization of ecological niches. Curr. Biol. 23, 1713–1717 (2013).
pubmed: 23993843 pmcid: 3980636 doi: 10.1016/j.cub.2013.07.029
Gehrer, L. & Vorburger, C. Parasitoids as vectors of facultative bacterial endosymbionts in aphids. Biol. Lett. 8, 613–615 (2012).
pubmed: 22417790 pmcid: 3391472 doi: 10.1098/rsbl.2012.0144
Li, Q., Fan, J., Sun, J., Wang, M.-Q. & Chen, J. Plant-mediated horizontal transmission of Hamiltonella defensa in the wheat aphid Sitobion miscanthi. J. Agric. Food Chem. 66, 13367–13377 (2018).
pubmed: 30516997 doi: 10.1021/acs.jafc.8b04828 pmcid: 30516997
Moran, N. A. & Dunbar, H. E. Sexual acquisition of beneficial symbionts in aphids. Proc. Natl Acad. Sci. USA 103, 12803–12806 (2006).
pubmed: 16908834 doi: 10.1073/pnas.0605772103 pmcid: 16908834
Brandt, J. W., Chevignon, G., Oliver, K. M. & Strand, M. R. Culture of an aphid heritable symbiont demonstrates its direct role in defence against parasitoids. Proc. R. Soc. B. 284, 20171925 (2017).
Martinez, A. J., Weldon, S. R. & Oliver, K. M. Effects of parasitism on aphid nutritional and protective symbioses. Mol. Ecol. 23, 1594–1607 (2014).
pubmed: 24152321 doi: 10.1111/mec.12550 pmcid: 24152321
Russell, J. A. et al. Uncovering symbiont-driven genetic diversity across North American pea aphids. Mol. Ecol. 22, 2045–2059 (2013).
pubmed: 23379399 doi: 10.1111/mec.12211 pmcid: 23379399
Moran, N. A., Degnan, P. H., Santos, S. R., Dunbar, H. E. & Ochman, H. The players in a mutualistic symbiosis: insects, bacteria, viruses, and virulence genes. Proc. Natl Acad. Sci. USA 102, 16919–16926 (2005).
pubmed: 16195380 doi: 10.1073/pnas.0507029102 pmcid: 16195380
Ives, A. R. et al. Variability and parasitoid foraging efficiency: a case study of pea aphids and Aphidius ervi. Am. Nat. 154, 652–673 (1999).
pubmed: 10600611 doi: 10.1086/303269 pmcid: 10600611
Ives, A. R. & Dakos, V. Detecting dynamical changes in nonlinear time series using locally linear state-space models. Ecosphere 3, art58 (2012).
doi: 10.1890/ES11-00347.1
Harvey, A. C. Forecasting, Structural Time Series Models and the Kalman Filter (Cambridge Univ. Press, 1989).
Rauwald, K. S. & Ives, A. R. Biological control in disturbed agricultural systems and the rapid re-establishment of parasitoids. Ecol. Appl. 11, 1224–1234 (2001).
doi: 10.1890/1051-0761(2001)011[1224:BCIDAS]2.0.CO;2
Olson, A. C., Ives, A. R. & Gross, K. Spatially aggregated parasitism on pea aphids, Acyrthosiphon pisum, caused by random foraging behavior of the parasitoid Aphidius ervi. Oikos 91, 66–76 (2000).
doi: 10.1034/j.1600-0706.2000.910106.x
Caswell, H. Matrix Population Models (Sinauer Associates, 1989).
Caillaud, M. C. & Losey, J. E. Genetics of color polymorphism in the pea aphid, Acyrthosiphon pisum. J. Insect Sci. 10, 95 (2010).

Auteurs

Anthony R Ives (AR)

Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA. arives@wisc.edu.

Brandon T Barton (BT)

Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA.
Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA.

Rachel M Penczykowski (RM)

Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA.
Department of Biology, Washington University, St. Louis, MO, USA.

Jason P Harmon (JP)

School of Natural Resource Sciences, North Dakota State University, Fargo, ND, USA.

Kyungsun L Kim (KL)

Department of Entomology, University of Georgia, Athens, GA, USA.

Kerry Oliver (K)

Department of Entomology, University of Georgia, Athens, GA, USA.

Volker C Radeloff (VC)

SILVIS Lab, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, USA.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH