Self-perpetuating ecological-evolutionary dynamics in an agricultural host-parasite system.
Journal
Nature ecology & evolution
ISSN: 2397-334X
Titre abrégé: Nat Ecol Evol
Pays: England
ID NLM: 101698577
Informations de publication
Date de publication:
05 2020
05 2020
Historique:
received:
31
07
2019
accepted:
21
02
2020
pubmed:
24
3
2020
medline:
31
7
2020
entrez:
24
3
2020
Statut:
ppublish
Résumé
Ecological and evolutionary processes may become intertwined when they operate on similar time scales. Here we show ecological-evolutionary dynamics between parasitoids and aphids containing heritable symbionts that confer resistance against parasitism. In a large-scale field experiment, we manipulated the aphid's host plant to create ecological conditions that either favoured or disfavoured the parasitoid. The result was rapid evolutionary divergence of aphid resistance between treatment populations. Consistent with ecological-evolutionary dynamics, the resistant aphid populations then had reduced parasitism and increased population growth rates. We fit a model to quantify costs (reduced intrinsic rates of increase) and benefits of resistance. We also performed genetic assays on 5 years of field samples that showed persistent but highly variable frequencies of aphid clones containing protective symbionts; these patterns were consistent with simulations from the model. Our results show (1) rapid evolution that is intertwined with ecological dynamics and (2) variation in selection that prevents traits from becoming fixed, which together generate self-perpetuating ecological-evolutionary dynamics.
Identifiants
pubmed: 32203477
doi: 10.1038/s41559-020-1155-0
pii: 10.1038/s41559-020-1155-0
doi:
Banques de données
figshare
['10.6084/m9.figshare.11828865.v1']
Types de publication
Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
702-711Commentaires et corrections
Type : CommentIn
Références
Kingsolver, J. G. et al. The strength of phenotypic selection in natural populations. Am. Nat. 157, 245–261 (2001).
pubmed: 18707288
doi: 10.1086/319193
Endler, J. A. Natural Selection in the Wild (Princeton Univ. Press, 1986).
Thompson, J. N. Rapid evolution as an ecological process. Trends Ecol. Evol. 13, 329–332 (1998).
pubmed: 21238328
doi: 10.1016/S0169-5347(98)01378-0
Schoener, T. W. The newest synthesis: understanding the interplay of evolutionary and ecological dynamics. Science 331, 426–429 (2011).
pubmed: 21273479
doi: 10.1126/science.1193954
Pelletier, F., Garant, D. & Hendry, A. P. Eco-evolutionary dynamics. Phil. Trans. R. Soc. Lond. B 364, 1483–1489 (2009).
doi: 10.1098/rstb.2009.0027
Hairston, N. G., Ellner, S. P., Geber, M. A., Yoshida, T. & Fox, J. A. Rapid evolution and the convergence of ecological and evolutionary time. Ecol. Lett. 8, 1114–1127 (2005).
doi: 10.1111/j.1461-0248.2005.00812.x
Nosil, P. et al. Natural selection and the predictability of evolution in Timema stick insects. Science 359, 765–770 (2018).
pubmed: 29449486
doi: 10.1126/science.aap9125
Auld, S. K. J. R. et al. Variation in costs of parasite resistance among natural host populations. J. Evol. Biol. 26, 2479–2486 (2013).
pubmed: 24118613
doi: 10.1111/jeb.12243
Duffy, M. A. et al. Ecological context influences epidemic size and parasite-driven evolution. Science 335, 1636–1638 (2012).
pubmed: 22461614
doi: 10.1126/science.1215429
Travis, J. et al. in Eco-Evolutionary Dynamics Vol. 50 (eds Moya-Laraño, J. et al.) 1–40 (Academic Press, 2014).
Schaffner, L. R. et al. Consumer-resource dynamics is an eco-evolutionary process in a natural plankton community. Nat. Ecol. Evol. 3, 1351–1358 (2019).
pubmed: 31427731
doi: 10.1038/s41559-019-0960-9
pmcid: 31427731
De Meester, L. et al. Analysing eco-evolutionary dynamics: the challenging complexity of the real world. Funct. Ecol. 33, 43–59 (2019).
doi: 10.1111/1365-2435.13261
Yoshida, T., Jones, L. E., Ellner, S. P., Fussmann, G. F. & Hairston, N. G. Rapid evolution drives ecological dynamics in a predator–prey system. Nature 424, 303–306 (2003).
pubmed: 12867979
doi: 10.1038/nature01767
Papkou, A. et al. The genomic basis of Red Queen dynamics during rapid reciprocal host–pathogen coevolution. Proc. Natl Acad. Sci. USA 116, 923–928 (2019).
pubmed: 30598446
doi: 10.1073/pnas.1810402116
pmcid: 30598446
Saccheri, I. & Hanski, I. Natural selection and population dynamics. Trends Ecol. Evol. 21, 341–347 (2006).
pubmed: 16769435
doi: 10.1016/j.tree.2006.03.018
pmcid: 16769435
Govaert, L. et al. Eco-evolutionary feedbacks—theoretical models and perspectives. Funct. Ecol. 33, 13–30 (2019).
doi: 10.1111/1365-2435.13241
Siepielski, A. M., DiBattista, J. D. & Carlson, S. M. It’s about time: the temporal dynamics of phenotypic selection in the wild. Ecol. Lett. 12, 1261–1276 (2009).
pubmed: 19740111
doi: 10.1111/j.1461-0248.2009.01381.x
pmcid: 19740111
Carroll, S. P., Hendry, A. P., Reznick, D. N. & Fox, C. W. Evolution on ecological time-scales. Funct. Ecol. 21, 387–393 (2007).
doi: 10.1111/j.1365-2435.2007.01289.x
Lankau, R. A., Nuzzo, V., Spyreas, G. & Davis, A. S. Evolutionary limits ameliorate the negative impact of an invasive plant. Proc. Natl Acad. Sci. USA 106, 15362–15367 (2009).
pubmed: 19706431
doi: 10.1073/pnas.0905446106
pmcid: 19706431
van den Bosch, R., Schlinger, E. I., Hall, J. C. & Puttler, B. Studies on succession, distribution and phenology of imported parasites of Therioaphis trifolii (Monell) in southern California. Ecology 45, 602–621 (1964).
doi: 10.2307/1936112
Mackauer, M. Growth and developmental interactions in some aphids and their hymenopterous parasites. J. Insect Physiol. 32, 275–280 (1986).
doi: 10.1016/0022-1910(86)90039-9
Oliver, K. M., Degnan, P. H., Burke, G. R. & Moran, N. A. Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. Annu. Rev. Entomol. 55, 247–266 (2010).
pubmed: 19728837
doi: 10.1146/annurev-ento-112408-085305
pmcid: 19728837
Oliver, K. M., Russell, J. A., Moran, N. A. & Hunter, M. S. Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc. Natl Acad. Sci. USA 100, 1803–1807 (2003).
pubmed: 12563031
doi: 10.1073/pnas.0335320100
pmcid: 12563031
Meisner, M. H., Harmon, J. P. & Ives, A. R. Temperature effects on long-term population dynamics in a parasitoid-host system. Ecol. Monogr. 84, 457–476 (2014).
doi: 10.1890/13-1933.1
Snyder, W. E. & Ives, A. R. Interactions between specialist and generalist natural enemies: parasitoids, predators, and pea aphid biocontrol. Ecology 84, 91–107 (2003).
doi: 10.1890/0012-9658(2003)084[0091:IBSAGN]2.0.CO;2
Ives, A. R. & Settle, W. H. Metapopulation dynamics and pest control in agricultural systems. Am. Nat. 149, 220–246 (1997).
doi: 10.1086/285988
Bender, E. A., Case, T. J. & Gilpin, M. E. Perturbation experiments in community ecology: theory and practice. Ecology 65, 1–13 (1984).
doi: 10.2307/1939452
Oliver, K. M. & Higashi, C. H. V. Variations on a protective theme: Hamiltonella defensa infections in aphids variably impact parasitoid success. Curr. Opin. Insect Sci. 32, 1–7 (2019).
pubmed: 31113620
doi: 10.1016/j.cois.2018.08.009
pmcid: 31113620
Martinez, A. J., Doremus, M. R., Kraft, L. J., Kim, K. L. & Oliver, K. M. Multi-modal defences in aphids offer redundant protection and increased costs likely impeding a protective mutualism. J. Anim. Ecol. 87, 464–477 (2018).
pubmed: 28378393
doi: 10.1111/1365-2656.12675
pmcid: 28378393
Oliver, K. M., Degnan, P. H., Hunter, M. S. & Moran, N. A. Bacteriophages encode factors required for protection in a symbiotic mutualism. Science 325, 992–994 (2009).
pubmed: 19696350
pmcid: 5473335
doi: 10.1126/science.1174463
Martinez, A. J., Kim, K. L., Harmon, J. P. & Oliver, K. M. Specificity of multi-modal aphid defenses against two rival parasitoids. PLoS ONE 11, e0154670 (2016).
Rock, D. I. et al. Context-dependent vertical transmission shapes strong endosymbiont community structure in the pea aphid, Acyrthosiphon pisum. Mol. Ecol. 27, 2039–2056 (2018).
pubmed: 29215202
doi: 10.1111/mec.14449
Doremus, M. R. & Oliver, K. M. Aphid heritable symbiont exploits defensive mutualism. Appl. Environ. Microbiol. 83, AEM.03276-16 (2017).
Oliver, K. M., Smith, A. H. & Russell, J. A. Defensive symbiosis in the real world—advancing ecological studies of heritable, protective bacteria in aphids and beyond. Funct. Ecol. 28, 341–355 (2014).
doi: 10.1111/1365-2435.12133
Losey, J. E., Ives, A. R., Harmon, J., Brown, C. & Ballantyne, F. A polymorphism maintained by opposite patterns of parasitism and predation. Nature 388, 269–272 (1997).
doi: 10.1038/40849
Harmon, J., Losey, J. & Ives, A. R. The use of color vision in Coccinellidae. Oecologia 115, 287–292 (1998).
pubmed: 28308464
doi: 10.1007/s004420050518
Langley, S. A., Tilmon, K. J., Cardinale, B. J. & Ives, A. R. Learning by the parasitoid wasp, Aphidius ervi (Hymenoptera: Braconidae) alters individual fixed preferences for pea aphid color morphs. Oecologia 150, 172–179 (2006).
pubmed: 16858585
doi: 10.1007/s00442-006-0486-0
Tomasetto, F., Tylianakis, J. M., Reale, M., Wratten, S. & Goldson, S. L. Intensified agriculture favors evolved resistance to biological control. Proc. Natl Acad. Sci. USA 114, 3885–3890 (2017).
pubmed: 28289202
doi: 10.1073/pnas.1618416114
Hufbauer, R. A. & Roderick, G. K. Microevolution in biological control: mechanisms, patterns, and processes. Biol. Control 35, 227–239 (2005).
doi: 10.1016/j.biocontrol.2005.04.004
Mills, N. J. Rapid evolution of resistance to parasitism in biological control. Proc. Natl Acad. Sci. USA 114, 3792–3794 (2017).
pubmed: 28341708
doi: 10.1073/pnas.1702753114
Vorburger, C. & Perlman, S. J. The role of defensive symbionts in host–parasite coevolution. Biol. Rev. Camb. Philos. Soc. 93, 1747–1764 (2018).
pubmed: 29663622
doi: 10.1111/brv.12417
Caltagirone, L. E. Landmark examples in classical biological control. Annu. Rev. Entomol. 26, 213–232 (1981).
doi: 10.1146/annurev.en.26.010181.001241
Desneux, N. et al. Intraspecific variation in facultative symbiont infection among native and exotic pest populations: potential implications for biological control. Biol. Control 116, 27–35 (2018).
doi: 10.1016/j.biocontrol.2017.06.007
Kach, H., Mathe-Hubert, H., Dennis, A. B. & Vorburger, C. Rapid evolution of symbiont-mediated resistance compromises biological control of aphids by parasitoids. Evol. Appl. 11, 220–230 (2018).
pubmed: 29387157
doi: 10.1111/eva.12532
Dennis, A. B., Patel, V., Oliver, K. M. & Vorburger, C. Parasitoid gene expression changes after adaptation to symbiont-protected hosts. Evolution 71, 2599–2617 (2017).
pubmed: 28841224
doi: 10.1111/evo.13333
Barbosa, P. in Conservation Biological Control (ed. Barbosa, P.) 39–54 (Academic Press, 1998).
Snyder, W. E., Chang, G. C. & Prasad, R. P. in Ecology of Predator–Prey Interactions (eds Barbosa, P. & Castellanos, I.) 324–343 (Oxford Univ. Press, 2004).
Tscharntke, T. et al. When natural habitat fails to enhance biological pest control—five hypotheses. Biol. Conserv. 204, 449–458 (2016).
doi: 10.1016/j.biocon.2016.10.001
Oliver, K. M., Campos, J., Moran, N. A. & Hunter, M. S. Population dynamics of defensive symbionts in aphids. Proc. R. Soc. B 275, 293–299 (2008).
pubmed: 18029301
doi: 10.1098/rspb.2007.1192
Lynn-Bell, N. L., Strand, M. R. & Oliver, K. M. Bacteriophage acquisition restores protective mutualism. Microbiology 165, 985–989 (2019).
pubmed: 31140970
doi: 10.1099/mic.0.000816
pmcid: 31140970
Henry, L. M. et al. Horizontally transmitted symbionts and host colonization of ecological niches. Curr. Biol. 23, 1713–1717 (2013).
pubmed: 23993843
pmcid: 3980636
doi: 10.1016/j.cub.2013.07.029
Gehrer, L. & Vorburger, C. Parasitoids as vectors of facultative bacterial endosymbionts in aphids. Biol. Lett. 8, 613–615 (2012).
pubmed: 22417790
pmcid: 3391472
doi: 10.1098/rsbl.2012.0144
Li, Q., Fan, J., Sun, J., Wang, M.-Q. & Chen, J. Plant-mediated horizontal transmission of Hamiltonella defensa in the wheat aphid Sitobion miscanthi. J. Agric. Food Chem. 66, 13367–13377 (2018).
pubmed: 30516997
doi: 10.1021/acs.jafc.8b04828
pmcid: 30516997
Moran, N. A. & Dunbar, H. E. Sexual acquisition of beneficial symbionts in aphids. Proc. Natl Acad. Sci. USA 103, 12803–12806 (2006).
pubmed: 16908834
doi: 10.1073/pnas.0605772103
pmcid: 16908834
Brandt, J. W., Chevignon, G., Oliver, K. M. & Strand, M. R. Culture of an aphid heritable symbiont demonstrates its direct role in defence against parasitoids. Proc. R. Soc. B. 284, 20171925 (2017).
Martinez, A. J., Weldon, S. R. & Oliver, K. M. Effects of parasitism on aphid nutritional and protective symbioses. Mol. Ecol. 23, 1594–1607 (2014).
pubmed: 24152321
doi: 10.1111/mec.12550
pmcid: 24152321
Russell, J. A. et al. Uncovering symbiont-driven genetic diversity across North American pea aphids. Mol. Ecol. 22, 2045–2059 (2013).
pubmed: 23379399
doi: 10.1111/mec.12211
pmcid: 23379399
Moran, N. A., Degnan, P. H., Santos, S. R., Dunbar, H. E. & Ochman, H. The players in a mutualistic symbiosis: insects, bacteria, viruses, and virulence genes. Proc. Natl Acad. Sci. USA 102, 16919–16926 (2005).
pubmed: 16195380
doi: 10.1073/pnas.0507029102
pmcid: 16195380
Ives, A. R. et al. Variability and parasitoid foraging efficiency: a case study of pea aphids and Aphidius ervi. Am. Nat. 154, 652–673 (1999).
pubmed: 10600611
doi: 10.1086/303269
pmcid: 10600611
Ives, A. R. & Dakos, V. Detecting dynamical changes in nonlinear time series using locally linear state-space models. Ecosphere 3, art58 (2012).
doi: 10.1890/ES11-00347.1
Harvey, A. C. Forecasting, Structural Time Series Models and the Kalman Filter (Cambridge Univ. Press, 1989).
Rauwald, K. S. & Ives, A. R. Biological control in disturbed agricultural systems and the rapid re-establishment of parasitoids. Ecol. Appl. 11, 1224–1234 (2001).
doi: 10.1890/1051-0761(2001)011[1224:BCIDAS]2.0.CO;2
Olson, A. C., Ives, A. R. & Gross, K. Spatially aggregated parasitism on pea aphids, Acyrthosiphon pisum, caused by random foraging behavior of the parasitoid Aphidius ervi. Oikos 91, 66–76 (2000).
doi: 10.1034/j.1600-0706.2000.910106.x
Caswell, H. Matrix Population Models (Sinauer Associates, 1989).
Caillaud, M. C. & Losey, J. E. Genetics of color polymorphism in the pea aphid, Acyrthosiphon pisum. J. Insect Sci. 10, 95 (2010).