Quantitative imaging feature pipeline: a web-based tool for utilizing, sharing, and building image-processing pipelines.

feature extraction machine learning medical image analysis processing pipeline radiomics

Journal

Journal of medical imaging (Bellingham, Wash.)
ISSN: 2329-4302
Titre abrégé: J Med Imaging (Bellingham)
Pays: United States
ID NLM: 101643461

Informations de publication

Date de publication:
Jul 2020
Historique:
received: 09 09 2019
accepted: 26 02 2020
entrez: 25 3 2020
pubmed: 25 3 2020
medline: 25 3 2020
Statut: ppublish

Résumé

Quantitative image features that can be computed from medical images are proving to be valuable biomarkers of underlying cancer biology that can be used for assessing treatment response and predicting clinical outcomes. However, validation and eventual clinical implementation of these tools is challenging due to the absence of shared software algorithms, architectures, and the tools required for computing, comparing, evaluating, and disseminating predictive models. Similarly, researchers need to have programming expertise in order to complete these tasks. The quantitative image feature pipeline (QIFP) is an open-source, web-based, graphical user interface (GUI) of configurable quantitative image-processing pipelines for both planar (two-dimensional) and volumetric (three-dimensional) medical images. This allows researchers and clinicians a GUI-driven approach to process and analyze images, without having to write any software code. The QIFP allows users to upload a repository of linked imaging, segmentation, and clinical data or access publicly available datasets (e.g., The Cancer Imaging Archive) through direct links. Researchers have access to a library of file conversion, segmentation, quantitative image feature extraction, and machine learning algorithms. An interface is also provided to allow users to upload their own algorithms in Docker containers. The QIFP gives researchers the tools and infrastructure for the assessment and development of new imaging biomarkers and the ability to use them for single and multicenter clinical and virtual clinical trials.

Identifiants

pubmed: 32206688
doi: 10.1117/1.JMI.7.4.042803
pii: 19234SSR
pmc: PMC7070161
doi:

Types de publication

Journal Article

Langues

eng

Pagination

042803

Subventions

Organisme : NCI NIH HHS
ID : U01 CA187947
Pays : United States
Organisme : NCI NIH HHS
ID : U01 CA190214
Pays : United States

Informations de copyright

© The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.

Références

Radiology. 2016 Feb;278(2):563-77
pubmed: 26579733
IEEE Trans Image Process. 2014 Feb;23(2):898-908
pubmed: 26270926
Sci Data. 2018 Oct 16;5:180202
pubmed: 30325352
J Clin Oncol. 2016 Jun 20;34(18):2157-64
pubmed: 27138577
J Radiat Res. 2018 Mar 1;59(suppl_1):i25-i31
pubmed: 29385618
Tomography. 2019 Mar;5(1):145-153
pubmed: 30854452
J Med Imaging (Bellingham). 2020 Jul;7(4):042803
pubmed: 32206688
Nat Commun. 2014 Jun 03;5:4006
pubmed: 24892406
J Digit Imaging. 2010 Apr;23(2):217-25
pubmed: 19294468
Tomography. 2020 Jun;6(2):118-128
pubmed: 32548288
J Digit Imaging. 2018 Aug;31(4):403-414
pubmed: 28993897
J Am Coll Radiol. 2018 Mar;15(3 Pt B):512-520
pubmed: 29398494
Radiology. 2016 Dec;281(3):947-957
pubmed: 27347764
Sci Rep. 2015 Aug 17;5:13087
pubmed: 26278466
J Digit Imaging. 2013 Dec;26(6):1045-57
pubmed: 23884657
Opt Express. 2010 Jul 5;18(14):15256-66
pubmed: 20640012
Phys Med Biol. 2016 Jul 7;61(13):R150-66
pubmed: 27269645
IEEE Trans Med Imaging. 2017 Mar;36(3):781-791
pubmed: 28113927
Cancer. 2018 Dec 15;124(24):4633-4649
pubmed: 30383900
Cancer Res. 2017 Nov 1;77(21):e104-e107
pubmed: 29092951
Eur J Cancer. 2012 Mar;48(4):441-6
pubmed: 22257792
Tomography. 2019 Mar;5(1):170-183
pubmed: 30854455
Phys Med Biol. 2015 Jul 21;60(14):5471-96
pubmed: 26119045
Med Image Anal. 2017 Apr;37:46-55
pubmed: 28157660
IEEE Trans Image Process. 2017 Oct;26(10):4900-4910
pubmed: 28682256
Clin Radiol. 2017 Jan;72(1):3-10
pubmed: 27742105
Lung Cancer. 2018 Jan;115:34-41
pubmed: 29290259

Auteurs

Sarah A Mattonen (SA)

Stanford University, Department of Radiology, Stanford, California, United States.
The University of Western Ontario, Department of Medical Biophysics, London, Ontario, Canada.
The University of Western Ontario, Department of Oncology, London, Ontario, Canada.

Dev Gude (D)

Stanford University, Department of Radiology, Stanford, California, United States.

Sebastian Echegaray (S)

Stanford University, Department of Radiology, Stanford, California, United States.

Shaimaa Bakr (S)

Stanford University, Department of Electrical Engineering, Stanford, California, United States.

Daniel L Rubin (DL)

Stanford University, Department of Radiology, Stanford, California, United States.
Stanford University, Department of Medicine, Stanford, California, United States.
Stanford University, Department of Biomedical Data Science, Stanford, California, United States.

Sandy Napel (S)

Stanford University, Department of Radiology, Stanford, California, United States.
Stanford University, Department of Electrical Engineering, Stanford, California, United States.
Stanford University, Department of Medicine, Stanford, California, United States.

Classifications MeSH