In-depth characterization of a novel live-attenuated Mayaro virus vaccine candidate using an immunocompetent mouse model of Mayaro disease.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
24 03 2020
Historique:
received: 02 12 2019
accepted: 24 02 2020
entrez: 27 3 2020
pubmed: 27 3 2020
medline: 24 11 2020
Statut: epublish

Résumé

Mayaro virus (MAYV) is endemic in South American countries where it is responsible for sporadic outbreaks of acute febrile illness. The hallmark of MAYV infection is a highly debilitating and chronic arthralgia. Although MAYV emergence is a potential threat, there are no specific therapies or licensed vaccine. In this study, we developed a murine model of MAYV infection that emulates many of the most relevant clinical features of the infection in humans and tested a live-attenuated MAYV vaccine candidate (MAYV/IRES). Intraplantar inoculation of a WT strain of MAYV into immunocompetent mice induced persistent hypernociception, transient viral replication in target organs, systemic production of inflammatory cytokines, chemokines and specific humoral IgM and IgG responses. Inoculation of MAYV/IRES in BALB/c mice induced strong specific cellular and humoral responses. Moreover, MAYV/IRES vaccination of immunocompetent and interferon receptor-defective mice resulted in protection from disease induced by the virulent wt MAYV strain. Thus, this study describes a novel model of MAYV infection in immunocompetent mice and highlights the potential role of a live-attenuated MAYV vaccine candidate in host's protection from disease induced by a virulent MAYV strain.

Identifiants

pubmed: 32210270
doi: 10.1038/s41598-020-62084-x
pii: 10.1038/s41598-020-62084-x
pmc: PMC7093544
doi:

Substances chimiques

Antibodies, Viral 0
Cytokines 0
Vaccines, Attenuated 0
Viral Vaccines 0

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

5306

Subventions

Organisme : NIAID NIH HHS
ID : R01 AI093491
Pays : United States
Organisme : NIAID NIH HHS
ID : R24 AI120942
Pays : United States

Références

Coimbra, T. L. et al. Mayaro virus: imported cases of human infection in Sao Paulo State, Brazil. Rev. do Inst. de. Medicina Tropical de Sao Paulo 49, 221–224 (2007).
doi: 10.1590/S0036-46652007000400005
Anderson, C. R., Downs, W. G., Wattley, G. H., Ahin, N. W. & Reese, A. A. Mayaro virus: a new human disease agent. II. Isolation from blood of patients in Trinidad, B.W.I. Am. J. tropical Med. Hyg. 6, 1012–1016 (1957).
doi: 10.4269/ajtmh.1957.6.1012
Neumayr, A. et al. Mayaro virus infection in traveler returning from Amazon Basin, northern Peru. Emerg. Infect. Dis. 18, 695–696, https://doi.org/10.3201/eid1804.111717 (2012).
doi: 10.3201/eid1804.111717 pubmed: 22469145 pmcid: 22469145
Torres, J. R. et al. Family cluster of Mayaro fever, Venezuela. Emerg. Infect. Dis. 10, 1304–1306, https://doi.org/10.3201/eid1007.030860 (2004).
doi: 10.3201/eid1007.030860 pubmed: 15324555 pmcid: 15324555
Causey, O. R. & Maroja, O. M. Mayaro virus: a new human disease agent. III. Investigation of an epidemic of acute febrile illness on the river Guama in Para, Brazil, and isolation of Mayaro virus as causative agent. Am. J. tropical Med. Hyg. 6, 1017–1023 (1957).
doi: 10.4269/ajtmh.1957.6.1017
Pinheiro, F. P. et al. An outbreak of Mayaro virus disease in Belterra, Brazil. I. Clinical and virological findings. Am. J. tropical Med. Hyg. 30, 674–681 (1981).
doi: 10.4269/ajtmh.1981.30.674
LeDuc, J. W., Pinheiro, F. P. & Travassos da Rosa, A. P. An outbreak of Mayaro virus disease in Belterra, Brazil. II. Epidemiology. Am. J. tropical Med. Hyg. 30, 682–688 (1981).
doi: 10.4269/ajtmh.1981.30.682
Serra, O. P., Cardoso, B. F., Ribeiro, A. L. M., leal Santos, F. A. & Slhessarenko, R. D. Mayaro virus and dengue virus 1 and 4 natural infection in culicids from Cuiabá, state of Mato Grosso, Brazil. Mem. Inst. Oswaldo Cruz 111, 20–29, https://doi.org/10.1590/0074-02760150270 (2016).
doi: 10.1590/0074-02760150270 pubmed: 26784852 pmcid: 26784852
Pauvolid-Corrêa, A. et al. Neutralising antibodies for Mayaro virus in Pantanal, Brazil. Mem. Inst. Oswaldo Cruz 110, 125–133, https://doi.org/10.1590/0074-02760140383 (2015).
doi: 10.1590/0074-02760140383 pubmed: 25742272 pmcid: 25742272
Zuchi, N., Heinen, L. B. d. S., Santos, M. A. M. D., Pereira, F. C. & Slhessarenko, R. D. Molecular detection of Mayaro virus during a dengue outbreak in the state of Mato Grosso, Central-West Brazil. Mem. Inst. Oswaldo Cruz 109, 820–823, https://doi.org/10.1590/0074-0276140108 (2014).
doi: 10.1590/0074-0276140108 pubmed: 25141284 pmcid: 25141284
Batista, P. M. et al. Detection of arboviruses of public health interest in free-living New World primates (Sapajus spp.; Alouatta caraya) captured in Mato Grosso do Sul, Brazil. Rev. Soc. Bras. Med. Trop. 46, 684–690, https://doi.org/10.1590/0037-8682-0181-2013 (2013).
doi: 10.1590/0037-8682-0181-2013 pubmed: 24474008 pmcid: 24474008
Batista, P. M., Andreotti, R., Chiang, J. O., Ferreira, M. S. & Vasconcelos, P. F. d. C. Seroepidemiological monitoring in sentinel animals and vectors as part of arbovirus surveillance in the state of Mato Grosso do Sul, Brazil. Rev. Soc. Bras. Med. Trop. 45, 168–173 (2012).
doi: 10.1590/S0037-86822012000200006 pubmed: 22534986 pmcid: 22534986
da Costa, V. G., de Rezende Feres, V. C., Saivish, M. V., de Lima Gimaque, J. B. & Moreli, M. L. Silent emergence of Mayaro and Oropouche viruses in humans in Central Brazil. Int. J. Infect. diseases: IJID: Off. Publ. Int. Soc. Infect. Dis. 62, 84–85, https://doi.org/10.1016/j.ijid.2017.07.016 (2017).
doi: 10.1016/j.ijid.2017.07.016
Mourao, M. P. et al. Mayaro fever in the city of Manaus, Brazil, 2007-2008. Vector borne zoonotic Dis. 12, 42–46, https://doi.org/10.1089/vbz.2011.0669 (2012).
doi: 10.1089/vbz.2011.0669 pubmed: 21923266 pmcid: 21923266
Wahid, B., Ali, A., Rafique, S. & Idrees, M. Global expansion of chikungunya virus: mapping the 64-year history. Int. J. Infect. diseases: IJID: Off. Publ. Int. Soc. Infect. Dis. 58, 69–76, https://doi.org/10.1016/j.ijid.2017.03.006 (2017).
doi: 10.1016/j.ijid.2017.03.006
Tsetsarkin, K. A., Chen, R. & Weaver, S. C. Interspecies transmission and chikungunya virus emergence. Curr. Opin. virology 16, 143–150, https://doi.org/10.1016/j.coviro.2016.02.007 (2016).
doi: 10.1016/j.coviro.2016.02.007
Long, K. C. et al. Experimental transmission of Mayaro virus by Aedes aegypti. Am. J. tropical Med. Hyg. 85, 750–757, https://doi.org/10.4269/ajtmh.2011.11-0359 (2011).
doi: 10.4269/ajtmh.2011.11-0359
Smith, G. C. & Francy, D. B. Laboratory studies of a Brazilian strain of Aedes albopictus as a potential vector of Mayaro and Oropouche viruses. J. Am. Mosq. Control. Assoc. 7, 89–93 (1991).
pubmed: 1646286 pmcid: 1646286
Auguste, A. J. et al. Evolutionary and Ecological Characterization of Mayaro Virus Strains Isolated during an Outbreak, Venezuela, 2010. Emerg. Infect. Dis. 21, 1742–1750, https://doi.org/10.3201/eid2110.141660 (2015).
doi: 10.3201/eid2110.141660 pubmed: 26401714 pmcid: 26401714
Terzian, A. C. et al. Isolation and characterization of Mayaro virus from a human in Acre, Brazil. Am. J. tropical Med. Hyg. 92, 401–404, https://doi.org/10.4269/ajtmh.14-0417 (2015).
doi: 10.4269/ajtmh.14-0417
Mavian, C. et al. Emergence of recombinant Mayaro virus strains from the Amazon basin. Sci. Rep. 7, 8718, https://doi.org/10.1038/s41598-017-07152-5 (2017).
doi: 10.1038/s41598-017-07152-5 pubmed: 28821712 pmcid: 28821712
Mota, M. T. D. O., Ribeiro, M. R., Vedovello, D. & Nogueira, M. L. Mayaro virus: a neglected arbovirus of the Americas. Future Virology 10, 1109–1122, https://doi.org/10.2217/fvl.15.76 (2015).
doi: 10.2217/fvl.15.76
Abad-Franch, F. et al. Mayaro virus infection in amazonia: a multimodel inference approach to risk factor assessment. PLoS Negl. Trop. Dis. 6, e1846, https://doi.org/10.1371/journal.pntd.0001846 (2012).
doi: 10.1371/journal.pntd.0001846 pubmed: 23071852 pmcid: 23071852
Forshey, B. M. et al. Arboviral etiologies of acute febrile illnesses in Western South America, 2000-2007. PLoS Negl. Trop. Dis. 4, e787, https://doi.org/10.1371/journal.pntd.0000787 (2010).
doi: 10.1371/journal.pntd.0000787 pubmed: 20706628 pmcid: 20706628
Weise, W. J. et al. A novel live-attenuated vaccine candidate for mayaro Fever. PLoS Negl. Trop. Dis. 8, e2969, https://doi.org/10.1371/journal.pntd.0002969 (2014).
doi: 10.1371/journal.pntd.0002969 pubmed: 25101995 pmcid: 25101995
Webb, E. M. et al. Effects of Chikungunya virus immunity on Mayaro virus disease and epidemic potential. Sci. Rep. 9, 20399, https://doi.org/10.1038/s41598-019-56551-3 (2019).
doi: 10.1038/s41598-019-56551-3 pubmed: 31892710 pmcid: 31892710
Santiago, F. W. et al. Long-Term Arthralgia after Mayaro Virus Infection Correlates with Sustained Pro-inflammatory Cytokine Response. PLoS Negl. Trop. Dis. 9, e0004104, https://doi.org/10.1371/journal.pntd.0004104 (2015).
doi: 10.1371/journal.pntd.0004104 pubmed: 26496497 pmcid: 26496497
Garcia-Sastre, A. Ten Strategies of Interferon Evasion by Viruses. Cell host microbe 22, 176–184, https://doi.org/10.1016/j.chom.2017.07.012 (2017).
doi: 10.1016/j.chom.2017.07.012 pubmed: 28799903 pmcid: 28799903
Couderc, T. et al. A mouse model for Chikungunya: young age and inefficient type-I interferon signaling are risk factors for severe disease. PLoS Pathog. 4, e29, https://doi.org/10.1371/journal.ppat.0040029 (2008).
doi: 10.1371/journal.ppat.0040029 pubmed: 18282093 pmcid: 18282093
Plante, K. et al. Novel chikungunya vaccine candidate with an IRES-based attenuation and host range alteration mechanism. PLoS Pathog. 7, e1002142, https://doi.org/10.1371/journal.ppat.1002142 (2011).
doi: 10.1371/journal.ppat.1002142 pubmed: 21829348 pmcid: 21829348
Hotez, P. J. & Murray, K. O. Dengue, West Nile virus, chikungunya, Zika-and now Mayaro? PLoS Negl. Trop. Dis. 11, e0005462, https://doi.org/10.1371/journal.pntd.0005462 (2017).
doi: 10.1371/journal.pntd.0005462 pubmed: 28859086 pmcid: 28859086
Esposito, D. L. A. & Fonseca, B. Will Mayaro virus be responsible for the next outbreak of an arthropod-borne virus in Brazil? Braz. J. Infect. diseases: an. Off. Publ. Braz. Soc. Infect. Dis. 21, 540–544, https://doi.org/10.1016/j.bjid.2017.06.002 (2017).
doi: 10.1016/j.bjid.2017.06.002
Marcondes, C. B., Contigiani, M. & Gleiser, R. M. Emergent and Reemergent Arboviruses in South America and the Caribbean: Why So Many and Why Now? J. Med. entomology 54, 509–532, https://doi.org/10.1093/jme/tjw209 (2017).
doi: 10.1093/jme/tjw209
Mackay, I. M. & Arden, K. E. Mayaro virus: a forest virus primed for a trip to the city? Microbes Infect. 18, 724–734, https://doi.org/10.1016/j.micinf.2016.10.007 (2016).
doi: 10.1016/j.micinf.2016.10.007 pubmed: 27989728 pmcid: 27989728
Rodriguez-Morales, A. J., Paniz-Mondolfi, A. E., Villamil-Gomez, W. E. & Navarro, J. C. Mayaro, Oropouche and Venezuelan Equine Encephalitis viruses: Following in the footsteps of Zika? Travel. Med. Infect. Dis. 15, 72–73, https://doi.org/10.1016/j.tmaid.2016.11.001 (2017).
doi: 10.1016/j.tmaid.2016.11.001 pubmed: 27826073 pmcid: 27826073
Weaver, S. C. & Reisen, W. K. Present and future arboviral threats. Antivir. Res. 85, 328–345, https://doi.org/10.1016/j.antiviral.2009.10.008 (2010).
doi: 10.1016/j.antiviral.2009.10.008 pubmed: 19857523 pmcid: 19857523
Haist, K. C., Burrack, K. S., Davenport, B. J. & Morrison, T. E. Inflammatory monocytes mediate control of acute alphavirus infection in mice. PLoS Pathog. 13, e1006748, https://doi.org/10.1371/journal.ppat.1006748 (2017).
doi: 10.1371/journal.ppat.1006748 pubmed: 29244871 pmcid: 29244871
Gardner, J. et al. Chikungunya virus arthritis in adult wild-type mice. J. virology 84, 8021–8032, https://doi.org/10.1128/JVI.02603-09 (2010).
doi: 10.1128/JVI.02603-09 pubmed: 20519386 pmcid: 20519386
Ruiz Silva, M., van der Ende-Metselaar, H., Mulder, H. L., Smit, J. M. & Rodenhuis-Zybert, I. A. Mechanism and role of MCP-1 upregulation upon chikungunya virus infection in human peripheral blood mononuclear cells. Sci. Rep. 6, 32288, https://doi.org/10.1038/srep32288 (2016).
doi: 10.1038/srep32288 pubmed: 27558873 pmcid: 27558873
Santos, F. M. et al. Animal model of arthritis and myositis induced by the Mayaro virus. PLoS Negl. Trop. Dis. 13, e0007375, https://doi.org/10.1371/journal.pntd.0007375 (2019).
doi: 10.1371/journal.pntd.0007375 pubmed: 31050676 pmcid: 31050676
Figueiredo, C. M. et al. Mayaro Virus Replication Restriction and Induction of Muscular Inflammation in Mice Are Dependent on Age, Type-I Interferon Response, and Adaptive Immunity. Front. Microbiol. 10, 2246, https://doi.org/10.3389/fmicb.2019.02246 (2019).
doi: 10.3389/fmicb.2019.02246 pubmed: 31632368 pmcid: 31632368
Yauch, L. E. & Shresta, S. Mouse models of dengue virus infection and disease. Antivir. Res. 80, 87–93, https://doi.org/10.1016/j.antiviral.2008.06.010 (2008).
doi: 10.1016/j.antiviral.2008.06.010 pubmed: 18619493 pmcid: 18619493
Lazear, H. M. et al. A Mouse Model of Zika Virus Pathogenesis. Cell host microbe 19, 720–730, https://doi.org/10.1016/j.chom.2016.03.010 (2016).
doi: 10.1016/j.chom.2016.03.010 pubmed: 27066744 pmcid: 27066744
da Silva Caetano, C. C. et al. Mayaro Virus Induction of Oxidative Stress is Associated With Liver Pathology in a Non-Lethal Mouse Model. Sci. Rep. 9, 15289, https://doi.org/10.1038/s41598-019-51713-9 (2019).
doi: 10.1038/s41598-019-51713-9 pubmed: 31653913 pmcid: 31653913
Watson, H. et al. Stiffness, pain, and joint counts in chronic chikungunya disease: relevance to disability and quality of life. Clin Rheumatol, https://doi.org/10.1007/s10067-019-04919-1 (2020).
Verri, W. A. Jr. et al. Hypernociceptive role of cytokines and chemokines: targets for analgesic drug development? Pharmacology therapeutics 112, 116–138, https://doi.org/10.1016/j.pharmthera.2006.04.001 (2006).
doi: 10.1016/j.pharmthera.2006.04.001 pubmed: 16730375 pmcid: 16730375
Millan, M. J. The induction of pain: an integrative review. Prog. Neurobiol. 57, 1–164, https://doi.org/10.1016/s0301-0082(98)00048-3 (1999).
doi: 10.1016/s0301-0082(98)00048-3 pubmed: 9987804 pmcid: 9987804
Cunha, T. M. et al. An electronic pressure-meter nociception paw test for mice. Braz. J. Med. Biol. Res. = Rev. brasileira de. Pesqui. medicas e biologicas 37, 401–407 (2004).
doi: 10.1590/S0100-879X2004000300018
Costa, V. V. et al. A model of DENV-3 infection that recapitulates severe disease and highlights the importance of IFN-gamma in host resistance to infection. PLoS Negl. Trop. Dis. 6, e1663, https://doi.org/10.1371/journal.pntd.0001663 (2012).
doi: 10.1371/journal.pntd.0001663 pubmed: 22666512 pmcid: 22666512
de Castro-Jorge, L. A. et al. The NLRP3 inflammasome is involved with the pathogenesis of Mayaro virus. PLoS Pathog. 15, e1007934, https://doi.org/10.1371/journal.ppat.1007934 (2019).
doi: 10.1371/journal.ppat.1007934 pubmed: 31479495 pmcid: 31479495
Manimunda, S. P. et al. Clinical progression of chikungunya fever during acute and chronic arthritic stages and the changes in joint morphology as revealed by imaging. Trans. R. Soc. Trop. Med. Hyg. 104, 392–399, https://doi.org/10.1016/j.trstmh.2010.01.011 (2010).
doi: 10.1016/j.trstmh.2010.01.011 pubmed: 20171708 pmcid: 20171708
Goupil, B. A. et al. Novel Lesions of Bones and Joints Associated with Chikungunya Virus Infection in Two Mouse Models of Disease: New Insights into Disease Pathogenesis. PLoS one 11, e0155243, https://doi.org/10.1371/journal.pone.0155243 (2016).
doi: 10.1371/journal.pone.0155243 pubmed: 27182740 pmcid: 27182740
Lidbury, B. A. et al. Macrophage-derived proinflammatory factors contribute to the development of arthritis and myositis after infection with an arthrogenic alphavirus. J. Infect. Dis. 197, 1585–1593, https://doi.org/10.1086/587841 (2008).
doi: 10.1086/587841 pubmed: 18433328 pmcid: 18433328
Tappe, D. et al. Sustained Elevated Cytokine Levels during Recovery Phase of Mayaro Virus Infection. Emerg. Infect. Dis. 22, 750–752, https://doi.org/10.3201/eid2204.151502 (2016).
doi: 10.3201/eid2204.151502 pubmed: 26981875 pmcid: 26981875
Ng, L. F. P. Immunopathology of Chikungunya Virus Infection: Lessons Learned from Patients and Animal Models. Annu. Rev. Virol. 4, 413–427, https://doi.org/10.1146/annurev-virology-101416-041808 (2017).
doi: 10.1146/annurev-virology-101416-041808 pubmed: 28637387 pmcid: 28637387
de Oliveira, C. M., Sakata, R. K., Issy, A. M., Gerola, L. R. & Salomao, R. Cytokines and pain. Rev Bras Anestesiol 61, 255–259, 260-255, 137–242, https://doi.org/10.1016/S0034-7094(11)70029-0 (2011).
Haist, K. C., Burrack, K. S., Diamond, M. S. & Morrison, T. E. Ly6Chi monocytes mediate control of acute alphavirus infection by MAVS-dependent production of type I IFN. J. Immunology 198(158), 156–158.156 (2017).
Morrison, T. E. et al. A mouse model of chikungunya virus-induced musculoskeletal inflammatory disease: evidence of arthritis, tenosynovitis, myositis, and persistence. Am. J. Pathol. 178, 32–40, https://doi.org/10.1016/j.ajpath.2010.11.018 (2011).
doi: 10.1016/j.ajpath.2010.11.018 pubmed: 21224040 pmcid: 21224040
Cavalheiro, M. G. et al. Macrophages as target cells for Mayaro virus infection: involvement of reactive oxygen species in the inflammatory response during virus replication. An. Acad. Bras. Ciênc. 88, 1485–1499, https://doi.org/10.1590/0001-3765201620150685 (2016).
doi: 10.1590/0001-3765201620150685 pubmed: 27627069 pmcid: 27627069
Rulli, N. E. et al. Amelioration of alphavirus-induced arthritis and myositis in a mouse model by treatment with bindarit, an inhibitor of monocyte chemotactic proteins. Arthritis Rheum. 60, 2513–2523, https://doi.org/10.1002/art.24682 (2009).
doi: 10.1002/art.24682 pubmed: 19644852 pmcid: 19644852
Amdekar, S., Parashar, D. & Alagarasu, K. Chikungunya Virus-Induced Arthritis: Role of Host and Viral Factors in the Pathogenesis. Viral immunology 30, 691–702, https://doi.org/10.1089/vim.2017.0052 (2017).
doi: 10.1089/vim.2017.0052 pubmed: 28910194 pmcid: 28910194
Szekanecz, Z. & Koch, A. E. Macrophages and their products in rheumatoid arthritis. Curr. Opin. Rheumatol. 19, 289–295, https://doi.org/10.1097/BOR.0b013e32805e87ae (2007).
doi: 10.1097/BOR.0b013e32805e87ae pubmed: 17414958 pmcid: 17414958
Lidbury, B. A., Simeonovic, C., Maxwell, G. E., Marshall, I. D. & Hapel, A. J. Macrophage-induced muscle pathology results in morbidity and mortality for Ross River virus-infected mice. J. Infect. Dis. 181, 27–34, https://doi.org/10.1086/315164 (2000).
doi: 10.1086/315164 pubmed: 10608747 pmcid: 10608747
Sarathy, V. V., Milligan, G. N., Bourne, N. & Barrett, A. D. Mouse models of dengue virus infection for vaccine testing. Vaccine 33, 7051–7060, https://doi.org/10.1016/j.vaccine.2015.09.112 (2015).
doi: 10.1016/j.vaccine.2015.09.112 pubmed: 26478201 pmcid: 26478201
Rossi, S. L. et al. Characterization of a Novel Murine Model to Study Zika Virus. Am. J. tropical Med. Hyg. 94, 1362–1369, https://doi.org/10.4269/ajtmh.16-0111 (2016).
doi: 10.4269/ajtmh.16-0111
Meier, K. C., Gardner, C. L., Khoretonenko, M. V., Klimstra, W. B. & Ryman, K. D. A mouse model for studying viscerotropic disease caused by yellow fever virus infection. PLoS Pathog. 5, e1000614, https://doi.org/10.1371/journal.ppat.1000614 (2009).
doi: 10.1371/journal.ppat.1000614 pubmed: 19816561 pmcid: 19816561
Sachs, D. et al. Cooperative role of tumour necrosis factor-alpha, interleukin-1beta and neutrophils in a novel behavioural model that concomitantly demonstrates articular inflammation and hypernociception in mice. Br. J. Pharmacol. 162, 72–83, https://doi.org/10.1111/j.1476-5381.2010.00895.x (2011).
doi: 10.1111/j.1476-5381.2010.00895.x pubmed: 20942867 pmcid: 20942867
Souza, D. G. et al. Repertaxin, a novel inhibitor of rat CXCR2 function, inhibits inflammatory responses that follow intestinal ischaemia and reperfusion injury. Br. J. Pharmacol. 143, 132–142, https://doi.org/10.1038/sj.bjp.0705862 (2004).
doi: 10.1038/sj.bjp.0705862 pubmed: 15302676 pmcid: 15302676
Queiroz-Junior, C. M. et al. Experimental arthritis triggers periodontal disease in mice: involvement of TNF-alpha and the oral Microbiota. J. Immunol. 187, 3821–3830, https://doi.org/10.4049/jimmunol.1101195 (2011).
doi: 10.4049/jimmunol.1101195 pubmed: 21890656 pmcid: 21890656
Costa, V. V. et al. Subversion of early innate antiviral responses during antibody-dependent enhancement of Dengue virus infection induces severe disease in immunocompetent mice. Med. Microbiol. Immunol. 203, 231–250, https://doi.org/10.1007/s00430-014-0334-5 (2014).
doi: 10.1007/s00430-014-0334-5 pubmed: 24723052 pmcid: 24723052

Auteurs

Mânlio Tasso de Oliveira Mota (MTO)

Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo, Brazil.

Vivian Vasconcelos Costa (VV)

Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil. vivianvcosta@gmail.com.

Michelle Amantéa Sugimoto (MA)

Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.

Georgia de Freitas Guimarães (GF)

Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo, Brazil.

Celso Martins Queiroz-Junior (CM)

Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.

Thaiane Pinto Moreira (TP)

Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.

Carla Daiane de Sousa (CD)

Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.

Franciele Martins Santos (FM)

Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.

Victoria Fulgêncio Queiroz (VF)

Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.

Ingredy Passos (I)

Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.

Josy Hubner (J)

Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.

Danielle Gloria Souza (DG)

Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.

Scott C Weaver (SC)

World Reference Center for Emerging Viruses and Arboviruses, Institute for Human Infections and Immunity, and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, 77555-0610, USA.

Mauro Martins Teixeira (MM)

Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.

Maurício Lacerda Nogueira (ML)

Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo, Brazil. mnogueira@famerp.br.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH