In-depth characterization of a novel live-attenuated Mayaro virus vaccine candidate using an immunocompetent mouse model of Mayaro disease.
Alphavirus
/ immunology
Alphavirus Infections
/ immunology
Animals
Antibodies, Viral
/ immunology
Cytokines
Disease Models, Animal
Immunocompromised Host
/ immunology
Male
Mice
Mice, Inbred BALB C
South America
Vaccines, Attenuated
/ immunology
Viral Vaccines
/ administration & dosage
Virus Replication
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
24 03 2020
24 03 2020
Historique:
received:
02
12
2019
accepted:
24
02
2020
entrez:
27
3
2020
pubmed:
27
3
2020
medline:
24
11
2020
Statut:
epublish
Résumé
Mayaro virus (MAYV) is endemic in South American countries where it is responsible for sporadic outbreaks of acute febrile illness. The hallmark of MAYV infection is a highly debilitating and chronic arthralgia. Although MAYV emergence is a potential threat, there are no specific therapies or licensed vaccine. In this study, we developed a murine model of MAYV infection that emulates many of the most relevant clinical features of the infection in humans and tested a live-attenuated MAYV vaccine candidate (MAYV/IRES). Intraplantar inoculation of a WT strain of MAYV into immunocompetent mice induced persistent hypernociception, transient viral replication in target organs, systemic production of inflammatory cytokines, chemokines and specific humoral IgM and IgG responses. Inoculation of MAYV/IRES in BALB/c mice induced strong specific cellular and humoral responses. Moreover, MAYV/IRES vaccination of immunocompetent and interferon receptor-defective mice resulted in protection from disease induced by the virulent wt MAYV strain. Thus, this study describes a novel model of MAYV infection in immunocompetent mice and highlights the potential role of a live-attenuated MAYV vaccine candidate in host's protection from disease induced by a virulent MAYV strain.
Identifiants
pubmed: 32210270
doi: 10.1038/s41598-020-62084-x
pii: 10.1038/s41598-020-62084-x
pmc: PMC7093544
doi:
Substances chimiques
Antibodies, Viral
0
Cytokines
0
Vaccines, Attenuated
0
Viral Vaccines
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
5306Subventions
Organisme : NIAID NIH HHS
ID : R01 AI093491
Pays : United States
Organisme : NIAID NIH HHS
ID : R24 AI120942
Pays : United States
Références
Coimbra, T. L. et al. Mayaro virus: imported cases of human infection in Sao Paulo State, Brazil. Rev. do Inst. de. Medicina Tropical de Sao Paulo 49, 221–224 (2007).
doi: 10.1590/S0036-46652007000400005
Anderson, C. R., Downs, W. G., Wattley, G. H., Ahin, N. W. & Reese, A. A. Mayaro virus: a new human disease agent. II. Isolation from blood of patients in Trinidad, B.W.I. Am. J. tropical Med. Hyg. 6, 1012–1016 (1957).
doi: 10.4269/ajtmh.1957.6.1012
Neumayr, A. et al. Mayaro virus infection in traveler returning from Amazon Basin, northern Peru. Emerg. Infect. Dis. 18, 695–696, https://doi.org/10.3201/eid1804.111717 (2012).
doi: 10.3201/eid1804.111717
pubmed: 22469145
pmcid: 22469145
Torres, J. R. et al. Family cluster of Mayaro fever, Venezuela. Emerg. Infect. Dis. 10, 1304–1306, https://doi.org/10.3201/eid1007.030860 (2004).
doi: 10.3201/eid1007.030860
pubmed: 15324555
pmcid: 15324555
Causey, O. R. & Maroja, O. M. Mayaro virus: a new human disease agent. III. Investigation of an epidemic of acute febrile illness on the river Guama in Para, Brazil, and isolation of Mayaro virus as causative agent. Am. J. tropical Med. Hyg. 6, 1017–1023 (1957).
doi: 10.4269/ajtmh.1957.6.1017
Pinheiro, F. P. et al. An outbreak of Mayaro virus disease in Belterra, Brazil. I. Clinical and virological findings. Am. J. tropical Med. Hyg. 30, 674–681 (1981).
doi: 10.4269/ajtmh.1981.30.674
LeDuc, J. W., Pinheiro, F. P. & Travassos da Rosa, A. P. An outbreak of Mayaro virus disease in Belterra, Brazil. II. Epidemiology. Am. J. tropical Med. Hyg. 30, 682–688 (1981).
doi: 10.4269/ajtmh.1981.30.682
Serra, O. P., Cardoso, B. F., Ribeiro, A. L. M., leal Santos, F. A. & Slhessarenko, R. D. Mayaro virus and dengue virus 1 and 4 natural infection in culicids from Cuiabá, state of Mato Grosso, Brazil. Mem. Inst. Oswaldo Cruz 111, 20–29, https://doi.org/10.1590/0074-02760150270 (2016).
doi: 10.1590/0074-02760150270
pubmed: 26784852
pmcid: 26784852
Pauvolid-Corrêa, A. et al. Neutralising antibodies for Mayaro virus in Pantanal, Brazil. Mem. Inst. Oswaldo Cruz 110, 125–133, https://doi.org/10.1590/0074-02760140383 (2015).
doi: 10.1590/0074-02760140383
pubmed: 25742272
pmcid: 25742272
Zuchi, N., Heinen, L. B. d. S., Santos, M. A. M. D., Pereira, F. C. & Slhessarenko, R. D. Molecular detection of Mayaro virus during a dengue outbreak in the state of Mato Grosso, Central-West Brazil. Mem. Inst. Oswaldo Cruz 109, 820–823, https://doi.org/10.1590/0074-0276140108 (2014).
doi: 10.1590/0074-0276140108
pubmed: 25141284
pmcid: 25141284
Batista, P. M. et al. Detection of arboviruses of public health interest in free-living New World primates (Sapajus spp.; Alouatta caraya) captured in Mato Grosso do Sul, Brazil. Rev. Soc. Bras. Med. Trop. 46, 684–690, https://doi.org/10.1590/0037-8682-0181-2013 (2013).
doi: 10.1590/0037-8682-0181-2013
pubmed: 24474008
pmcid: 24474008
Batista, P. M., Andreotti, R., Chiang, J. O., Ferreira, M. S. & Vasconcelos, P. F. d. C. Seroepidemiological monitoring in sentinel animals and vectors as part of arbovirus surveillance in the state of Mato Grosso do Sul, Brazil. Rev. Soc. Bras. Med. Trop. 45, 168–173 (2012).
doi: 10.1590/S0037-86822012000200006
pubmed: 22534986
pmcid: 22534986
da Costa, V. G., de Rezende Feres, V. C., Saivish, M. V., de Lima Gimaque, J. B. & Moreli, M. L. Silent emergence of Mayaro and Oropouche viruses in humans in Central Brazil. Int. J. Infect. diseases: IJID: Off. Publ. Int. Soc. Infect. Dis. 62, 84–85, https://doi.org/10.1016/j.ijid.2017.07.016 (2017).
doi: 10.1016/j.ijid.2017.07.016
Mourao, M. P. et al. Mayaro fever in the city of Manaus, Brazil, 2007-2008. Vector borne zoonotic Dis. 12, 42–46, https://doi.org/10.1089/vbz.2011.0669 (2012).
doi: 10.1089/vbz.2011.0669
pubmed: 21923266
pmcid: 21923266
Wahid, B., Ali, A., Rafique, S. & Idrees, M. Global expansion of chikungunya virus: mapping the 64-year history. Int. J. Infect. diseases: IJID: Off. Publ. Int. Soc. Infect. Dis. 58, 69–76, https://doi.org/10.1016/j.ijid.2017.03.006 (2017).
doi: 10.1016/j.ijid.2017.03.006
Tsetsarkin, K. A., Chen, R. & Weaver, S. C. Interspecies transmission and chikungunya virus emergence. Curr. Opin. virology 16, 143–150, https://doi.org/10.1016/j.coviro.2016.02.007 (2016).
doi: 10.1016/j.coviro.2016.02.007
Long, K. C. et al. Experimental transmission of Mayaro virus by Aedes aegypti. Am. J. tropical Med. Hyg. 85, 750–757, https://doi.org/10.4269/ajtmh.2011.11-0359 (2011).
doi: 10.4269/ajtmh.2011.11-0359
Smith, G. C. & Francy, D. B. Laboratory studies of a Brazilian strain of Aedes albopictus as a potential vector of Mayaro and Oropouche viruses. J. Am. Mosq. Control. Assoc. 7, 89–93 (1991).
pubmed: 1646286
pmcid: 1646286
Auguste, A. J. et al. Evolutionary and Ecological Characterization of Mayaro Virus Strains Isolated during an Outbreak, Venezuela, 2010. Emerg. Infect. Dis. 21, 1742–1750, https://doi.org/10.3201/eid2110.141660 (2015).
doi: 10.3201/eid2110.141660
pubmed: 26401714
pmcid: 26401714
Terzian, A. C. et al. Isolation and characterization of Mayaro virus from a human in Acre, Brazil. Am. J. tropical Med. Hyg. 92, 401–404, https://doi.org/10.4269/ajtmh.14-0417 (2015).
doi: 10.4269/ajtmh.14-0417
Mavian, C. et al. Emergence of recombinant Mayaro virus strains from the Amazon basin. Sci. Rep. 7, 8718, https://doi.org/10.1038/s41598-017-07152-5 (2017).
doi: 10.1038/s41598-017-07152-5
pubmed: 28821712
pmcid: 28821712
Mota, M. T. D. O., Ribeiro, M. R., Vedovello, D. & Nogueira, M. L. Mayaro virus: a neglected arbovirus of the Americas. Future Virology 10, 1109–1122, https://doi.org/10.2217/fvl.15.76 (2015).
doi: 10.2217/fvl.15.76
Abad-Franch, F. et al. Mayaro virus infection in amazonia: a multimodel inference approach to risk factor assessment. PLoS Negl. Trop. Dis. 6, e1846, https://doi.org/10.1371/journal.pntd.0001846 (2012).
doi: 10.1371/journal.pntd.0001846
pubmed: 23071852
pmcid: 23071852
Forshey, B. M. et al. Arboviral etiologies of acute febrile illnesses in Western South America, 2000-2007. PLoS Negl. Trop. Dis. 4, e787, https://doi.org/10.1371/journal.pntd.0000787 (2010).
doi: 10.1371/journal.pntd.0000787
pubmed: 20706628
pmcid: 20706628
Weise, W. J. et al. A novel live-attenuated vaccine candidate for mayaro Fever. PLoS Negl. Trop. Dis. 8, e2969, https://doi.org/10.1371/journal.pntd.0002969 (2014).
doi: 10.1371/journal.pntd.0002969
pubmed: 25101995
pmcid: 25101995
Webb, E. M. et al. Effects of Chikungunya virus immunity on Mayaro virus disease and epidemic potential. Sci. Rep. 9, 20399, https://doi.org/10.1038/s41598-019-56551-3 (2019).
doi: 10.1038/s41598-019-56551-3
pubmed: 31892710
pmcid: 31892710
Santiago, F. W. et al. Long-Term Arthralgia after Mayaro Virus Infection Correlates with Sustained Pro-inflammatory Cytokine Response. PLoS Negl. Trop. Dis. 9, e0004104, https://doi.org/10.1371/journal.pntd.0004104 (2015).
doi: 10.1371/journal.pntd.0004104
pubmed: 26496497
pmcid: 26496497
Garcia-Sastre, A. Ten Strategies of Interferon Evasion by Viruses. Cell host microbe 22, 176–184, https://doi.org/10.1016/j.chom.2017.07.012 (2017).
doi: 10.1016/j.chom.2017.07.012
pubmed: 28799903
pmcid: 28799903
Couderc, T. et al. A mouse model for Chikungunya: young age and inefficient type-I interferon signaling are risk factors for severe disease. PLoS Pathog. 4, e29, https://doi.org/10.1371/journal.ppat.0040029 (2008).
doi: 10.1371/journal.ppat.0040029
pubmed: 18282093
pmcid: 18282093
Plante, K. et al. Novel chikungunya vaccine candidate with an IRES-based attenuation and host range alteration mechanism. PLoS Pathog. 7, e1002142, https://doi.org/10.1371/journal.ppat.1002142 (2011).
doi: 10.1371/journal.ppat.1002142
pubmed: 21829348
pmcid: 21829348
Hotez, P. J. & Murray, K. O. Dengue, West Nile virus, chikungunya, Zika-and now Mayaro? PLoS Negl. Trop. Dis. 11, e0005462, https://doi.org/10.1371/journal.pntd.0005462 (2017).
doi: 10.1371/journal.pntd.0005462
pubmed: 28859086
pmcid: 28859086
Esposito, D. L. A. & Fonseca, B. Will Mayaro virus be responsible for the next outbreak of an arthropod-borne virus in Brazil? Braz. J. Infect. diseases: an. Off. Publ. Braz. Soc. Infect. Dis. 21, 540–544, https://doi.org/10.1016/j.bjid.2017.06.002 (2017).
doi: 10.1016/j.bjid.2017.06.002
Marcondes, C. B., Contigiani, M. & Gleiser, R. M. Emergent and Reemergent Arboviruses in South America and the Caribbean: Why So Many and Why Now? J. Med. entomology 54, 509–532, https://doi.org/10.1093/jme/tjw209 (2017).
doi: 10.1093/jme/tjw209
Mackay, I. M. & Arden, K. E. Mayaro virus: a forest virus primed for a trip to the city? Microbes Infect. 18, 724–734, https://doi.org/10.1016/j.micinf.2016.10.007 (2016).
doi: 10.1016/j.micinf.2016.10.007
pubmed: 27989728
pmcid: 27989728
Rodriguez-Morales, A. J., Paniz-Mondolfi, A. E., Villamil-Gomez, W. E. & Navarro, J. C. Mayaro, Oropouche and Venezuelan Equine Encephalitis viruses: Following in the footsteps of Zika? Travel. Med. Infect. Dis. 15, 72–73, https://doi.org/10.1016/j.tmaid.2016.11.001 (2017).
doi: 10.1016/j.tmaid.2016.11.001
pubmed: 27826073
pmcid: 27826073
Weaver, S. C. & Reisen, W. K. Present and future arboviral threats. Antivir. Res. 85, 328–345, https://doi.org/10.1016/j.antiviral.2009.10.008 (2010).
doi: 10.1016/j.antiviral.2009.10.008
pubmed: 19857523
pmcid: 19857523
Haist, K. C., Burrack, K. S., Davenport, B. J. & Morrison, T. E. Inflammatory monocytes mediate control of acute alphavirus infection in mice. PLoS Pathog. 13, e1006748, https://doi.org/10.1371/journal.ppat.1006748 (2017).
doi: 10.1371/journal.ppat.1006748
pubmed: 29244871
pmcid: 29244871
Gardner, J. et al. Chikungunya virus arthritis in adult wild-type mice. J. virology 84, 8021–8032, https://doi.org/10.1128/JVI.02603-09 (2010).
doi: 10.1128/JVI.02603-09
pubmed: 20519386
pmcid: 20519386
Ruiz Silva, M., van der Ende-Metselaar, H., Mulder, H. L., Smit, J. M. & Rodenhuis-Zybert, I. A. Mechanism and role of MCP-1 upregulation upon chikungunya virus infection in human peripheral blood mononuclear cells. Sci. Rep. 6, 32288, https://doi.org/10.1038/srep32288 (2016).
doi: 10.1038/srep32288
pubmed: 27558873
pmcid: 27558873
Santos, F. M. et al. Animal model of arthritis and myositis induced by the Mayaro virus. PLoS Negl. Trop. Dis. 13, e0007375, https://doi.org/10.1371/journal.pntd.0007375 (2019).
doi: 10.1371/journal.pntd.0007375
pubmed: 31050676
pmcid: 31050676
Figueiredo, C. M. et al. Mayaro Virus Replication Restriction and Induction of Muscular Inflammation in Mice Are Dependent on Age, Type-I Interferon Response, and Adaptive Immunity. Front. Microbiol. 10, 2246, https://doi.org/10.3389/fmicb.2019.02246 (2019).
doi: 10.3389/fmicb.2019.02246
pubmed: 31632368
pmcid: 31632368
Yauch, L. E. & Shresta, S. Mouse models of dengue virus infection and disease. Antivir. Res. 80, 87–93, https://doi.org/10.1016/j.antiviral.2008.06.010 (2008).
doi: 10.1016/j.antiviral.2008.06.010
pubmed: 18619493
pmcid: 18619493
Lazear, H. M. et al. A Mouse Model of Zika Virus Pathogenesis. Cell host microbe 19, 720–730, https://doi.org/10.1016/j.chom.2016.03.010 (2016).
doi: 10.1016/j.chom.2016.03.010
pubmed: 27066744
pmcid: 27066744
da Silva Caetano, C. C. et al. Mayaro Virus Induction of Oxidative Stress is Associated With Liver Pathology in a Non-Lethal Mouse Model. Sci. Rep. 9, 15289, https://doi.org/10.1038/s41598-019-51713-9 (2019).
doi: 10.1038/s41598-019-51713-9
pubmed: 31653913
pmcid: 31653913
Watson, H. et al. Stiffness, pain, and joint counts in chronic chikungunya disease: relevance to disability and quality of life. Clin Rheumatol, https://doi.org/10.1007/s10067-019-04919-1 (2020).
Verri, W. A. Jr. et al. Hypernociceptive role of cytokines and chemokines: targets for analgesic drug development? Pharmacology therapeutics 112, 116–138, https://doi.org/10.1016/j.pharmthera.2006.04.001 (2006).
doi: 10.1016/j.pharmthera.2006.04.001
pubmed: 16730375
pmcid: 16730375
Millan, M. J. The induction of pain: an integrative review. Prog. Neurobiol. 57, 1–164, https://doi.org/10.1016/s0301-0082(98)00048-3 (1999).
doi: 10.1016/s0301-0082(98)00048-3
pubmed: 9987804
pmcid: 9987804
Cunha, T. M. et al. An electronic pressure-meter nociception paw test for mice. Braz. J. Med. Biol. Res. = Rev. brasileira de. Pesqui. medicas e biologicas 37, 401–407 (2004).
doi: 10.1590/S0100-879X2004000300018
Costa, V. V. et al. A model of DENV-3 infection that recapitulates severe disease and highlights the importance of IFN-gamma in host resistance to infection. PLoS Negl. Trop. Dis. 6, e1663, https://doi.org/10.1371/journal.pntd.0001663 (2012).
doi: 10.1371/journal.pntd.0001663
pubmed: 22666512
pmcid: 22666512
de Castro-Jorge, L. A. et al. The NLRP3 inflammasome is involved with the pathogenesis of Mayaro virus. PLoS Pathog. 15, e1007934, https://doi.org/10.1371/journal.ppat.1007934 (2019).
doi: 10.1371/journal.ppat.1007934
pubmed: 31479495
pmcid: 31479495
Manimunda, S. P. et al. Clinical progression of chikungunya fever during acute and chronic arthritic stages and the changes in joint morphology as revealed by imaging. Trans. R. Soc. Trop. Med. Hyg. 104, 392–399, https://doi.org/10.1016/j.trstmh.2010.01.011 (2010).
doi: 10.1016/j.trstmh.2010.01.011
pubmed: 20171708
pmcid: 20171708
Goupil, B. A. et al. Novel Lesions of Bones and Joints Associated with Chikungunya Virus Infection in Two Mouse Models of Disease: New Insights into Disease Pathogenesis. PLoS one 11, e0155243, https://doi.org/10.1371/journal.pone.0155243 (2016).
doi: 10.1371/journal.pone.0155243
pubmed: 27182740
pmcid: 27182740
Lidbury, B. A. et al. Macrophage-derived proinflammatory factors contribute to the development of arthritis and myositis after infection with an arthrogenic alphavirus. J. Infect. Dis. 197, 1585–1593, https://doi.org/10.1086/587841 (2008).
doi: 10.1086/587841
pubmed: 18433328
pmcid: 18433328
Tappe, D. et al. Sustained Elevated Cytokine Levels during Recovery Phase of Mayaro Virus Infection. Emerg. Infect. Dis. 22, 750–752, https://doi.org/10.3201/eid2204.151502 (2016).
doi: 10.3201/eid2204.151502
pubmed: 26981875
pmcid: 26981875
Ng, L. F. P. Immunopathology of Chikungunya Virus Infection: Lessons Learned from Patients and Animal Models. Annu. Rev. Virol. 4, 413–427, https://doi.org/10.1146/annurev-virology-101416-041808 (2017).
doi: 10.1146/annurev-virology-101416-041808
pubmed: 28637387
pmcid: 28637387
de Oliveira, C. M., Sakata, R. K., Issy, A. M., Gerola, L. R. & Salomao, R. Cytokines and pain. Rev Bras Anestesiol 61, 255–259, 260-255, 137–242, https://doi.org/10.1016/S0034-7094(11)70029-0 (2011).
Haist, K. C., Burrack, K. S., Diamond, M. S. & Morrison, T. E. Ly6Chi monocytes mediate control of acute alphavirus infection by MAVS-dependent production of type I IFN. J. Immunology 198(158), 156–158.156 (2017).
Morrison, T. E. et al. A mouse model of chikungunya virus-induced musculoskeletal inflammatory disease: evidence of arthritis, tenosynovitis, myositis, and persistence. Am. J. Pathol. 178, 32–40, https://doi.org/10.1016/j.ajpath.2010.11.018 (2011).
doi: 10.1016/j.ajpath.2010.11.018
pubmed: 21224040
pmcid: 21224040
Cavalheiro, M. G. et al. Macrophages as target cells for Mayaro virus infection: involvement of reactive oxygen species in the inflammatory response during virus replication. An. Acad. Bras. Ciênc. 88, 1485–1499, https://doi.org/10.1590/0001-3765201620150685 (2016).
doi: 10.1590/0001-3765201620150685
pubmed: 27627069
pmcid: 27627069
Rulli, N. E. et al. Amelioration of alphavirus-induced arthritis and myositis in a mouse model by treatment with bindarit, an inhibitor of monocyte chemotactic proteins. Arthritis Rheum. 60, 2513–2523, https://doi.org/10.1002/art.24682 (2009).
doi: 10.1002/art.24682
pubmed: 19644852
pmcid: 19644852
Amdekar, S., Parashar, D. & Alagarasu, K. Chikungunya Virus-Induced Arthritis: Role of Host and Viral Factors in the Pathogenesis. Viral immunology 30, 691–702, https://doi.org/10.1089/vim.2017.0052 (2017).
doi: 10.1089/vim.2017.0052
pubmed: 28910194
pmcid: 28910194
Szekanecz, Z. & Koch, A. E. Macrophages and their products in rheumatoid arthritis. Curr. Opin. Rheumatol. 19, 289–295, https://doi.org/10.1097/BOR.0b013e32805e87ae (2007).
doi: 10.1097/BOR.0b013e32805e87ae
pubmed: 17414958
pmcid: 17414958
Lidbury, B. A., Simeonovic, C., Maxwell, G. E., Marshall, I. D. & Hapel, A. J. Macrophage-induced muscle pathology results in morbidity and mortality for Ross River virus-infected mice. J. Infect. Dis. 181, 27–34, https://doi.org/10.1086/315164 (2000).
doi: 10.1086/315164
pubmed: 10608747
pmcid: 10608747
Sarathy, V. V., Milligan, G. N., Bourne, N. & Barrett, A. D. Mouse models of dengue virus infection for vaccine testing. Vaccine 33, 7051–7060, https://doi.org/10.1016/j.vaccine.2015.09.112 (2015).
doi: 10.1016/j.vaccine.2015.09.112
pubmed: 26478201
pmcid: 26478201
Rossi, S. L. et al. Characterization of a Novel Murine Model to Study Zika Virus. Am. J. tropical Med. Hyg. 94, 1362–1369, https://doi.org/10.4269/ajtmh.16-0111 (2016).
doi: 10.4269/ajtmh.16-0111
Meier, K. C., Gardner, C. L., Khoretonenko, M. V., Klimstra, W. B. & Ryman, K. D. A mouse model for studying viscerotropic disease caused by yellow fever virus infection. PLoS Pathog. 5, e1000614, https://doi.org/10.1371/journal.ppat.1000614 (2009).
doi: 10.1371/journal.ppat.1000614
pubmed: 19816561
pmcid: 19816561
Sachs, D. et al. Cooperative role of tumour necrosis factor-alpha, interleukin-1beta and neutrophils in a novel behavioural model that concomitantly demonstrates articular inflammation and hypernociception in mice. Br. J. Pharmacol. 162, 72–83, https://doi.org/10.1111/j.1476-5381.2010.00895.x (2011).
doi: 10.1111/j.1476-5381.2010.00895.x
pubmed: 20942867
pmcid: 20942867
Souza, D. G. et al. Repertaxin, a novel inhibitor of rat CXCR2 function, inhibits inflammatory responses that follow intestinal ischaemia and reperfusion injury. Br. J. Pharmacol. 143, 132–142, https://doi.org/10.1038/sj.bjp.0705862 (2004).
doi: 10.1038/sj.bjp.0705862
pubmed: 15302676
pmcid: 15302676
Queiroz-Junior, C. M. et al. Experimental arthritis triggers periodontal disease in mice: involvement of TNF-alpha and the oral Microbiota. J. Immunol. 187, 3821–3830, https://doi.org/10.4049/jimmunol.1101195 (2011).
doi: 10.4049/jimmunol.1101195
pubmed: 21890656
pmcid: 21890656
Costa, V. V. et al. Subversion of early innate antiviral responses during antibody-dependent enhancement of Dengue virus infection induces severe disease in immunocompetent mice. Med. Microbiol. Immunol. 203, 231–250, https://doi.org/10.1007/s00430-014-0334-5 (2014).
doi: 10.1007/s00430-014-0334-5
pubmed: 24723052
pmcid: 24723052