Stimulation of soluble guanylate cyclase improves donor organ function in rat heart transplantation.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
24 03 2020
Historique:
received: 09 04 2019
accepted: 06 03 2020
entrez: 27 3 2020
pubmed: 27 3 2020
medline: 19 12 2020
Statut: epublish

Résumé

Heart transplantation remains the definitive therapy of end-stage heart failure. Ischemia-reperfusion injury occurring during transplantation is a primary determinant of long-term outcome of heart transplantation and primary graft insufficiency. Modification of the nitric oxide/soluble guanylate cyclase/cyclic guanosine monophosphate signaling pathway appears to be one of the most promising among the pharmacological interventional options. We aimed at characterizing the cardio-protective effects of the soluble guanylate cyclase stimulator riociguat in a rat model of heterotopic heart transplantation. Donor Lewis rats were treated orally with either riociguat or placebo for two days (n = 9) in each transplanted group and (n = 7) in donor groups. Following explantation, hearts were heterotopically transplanted. After one hour reperfusion, left ventricular pressure-volume relations and coronary blood flow were recorded. Molecular biological measurements and histological examination were also completed. Left ventricular contractility (systolic pressure: 117 ± 13 vs. 48 ± 5 mmHg, p < 0.001; dP/dt

Identifiants

pubmed: 32210293
doi: 10.1038/s41598-020-62156-y
pii: 10.1038/s41598-020-62156-y
pmc: PMC7093516
doi:

Substances chimiques

Antioxidants 0
Cardiotonic Agents 0
Enzyme Activators 0
Enzymes 0
Pyrazoles 0
Pyrimidines 0
Nitric Oxide 31C4KY9ESH
Cyclic GMP-Dependent Protein Kinases EC 2.7.11.12
Soluble Guanylyl Cyclase EC 4.6.1.2
Cyclic GMP H2D2X058MU
riociguat RU3FE2Y4XI

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

5358

Références

Dronavalli, V. B., Rogers, C. A. & Banner, N. R. Primary Cardiac Allograft Dysfunction-Validation of a Clinical Definition. Transplantation 99, 1919–1925, https://doi.org/10.1097/TP.0000000000000620 (2015).
doi: 10.1097/TP.0000000000000620 pubmed: 25742423 pmcid: 4548546
Methner, C. et al. Riociguat reduces infarct size and post-infarct heart failure in mouse hearts: insights from MRI/PET imaging. PLoS One 8, e83910, https://doi.org/10.1371/journal.pone.0083910 (2013).
doi: 10.1371/journal.pone.0083910 pubmed: 24391843 pmcid: 3877128
Dhalla, N. S., Elmoselhi, A. B., Hata, T. & Makino, N. Status of myocardial antioxidants in ischemia-reperfusion injury. Cardiovasc Res 47, 446–456 (2000).
doi: 10.1016/S0008-6363(00)00078-X
Inserte, J. & Garcia-Dorado, D. The cGMP/PKG pathway as a common mediator of cardioprotection: translatability and mechanism. Br J Pharmacol 172, 1996–2009, https://doi.org/10.1111/bph.12959 (2015).
doi: 10.1111/bph.12959 pubmed: 25297462 pmcid: 4386977
Frankenreiter, S. et al. cGMP-Elevating Compounds and Ischemic Conditioning Provide Cardioprotection Against Ischemia and Reperfusion Injury via Cardiomyocyte-Specific BK Channels. Circulation 136, 2337–2355, https://doi.org/10.1161/CIRCULATIONAHA.117.028723 (2017).
doi: 10.1161/CIRCULATIONAHA.117.028723 pubmed: 29051185
Korkmaz, S. et al. Pharmacological activation of soluble guanylate cyclase protects the heart against ischemic injury. Circulation 120, 677–686, https://doi.org/10.1161/CIRCULATIONAHA.109.870774 (2009).
doi: 10.1161/CIRCULATIONAHA.109.870774 pubmed: 19667237
Erdmann, E. et al. Cinaciguat, a soluble guanylate cyclase activator, unloads the heart but also causes hypotension in acute decompensated heart failure. Eur Heart J 34, 57–67, https://doi.org/10.1093/eurheartj/ehs196 (2013).
doi: 10.1093/eurheartj/ehs196 pubmed: 22778174
Frankenreiter, S. et al. Cardioprotection by ischemic postconditioning and cyclic guanosine monophosphate-elevating agents involves cardiomyocyte nitric oxide-sensitive guanylyl cyclase. Cardiovasc Res 114, 822–829, https://doi.org/10.1093/cvr/cvy039 (2018).
doi: 10.1093/cvr/cvy039 pubmed: 29438488
Grimminger, F. et al. First acute haemodynamic study of soluble guanylate cyclase stimulator riociguat in pulmonary hypertension. Eur Respir J 33, 785–792, https://doi.org/10.1183/09031936.00039808 (2009).
doi: 10.1183/09031936.00039808 pubmed: 19129292
Tsai, E. J. et al. Pressure-overload-induced subcellular relocalization/oxidation of soluble guanylyl cyclase in the heart modulates enzyme stimulation. Circ Res 110, 295–303, https://doi.org/10.1161/CIRCRESAHA.111.259242 (2012).
doi: 10.1161/CIRCRESAHA.111.259242 pubmed: 22095726
Mittendorf, J. et al. Discovery of riociguat (BAY 63-2521): a potent, oral stimulator of soluble guanylate cyclase for the treatment of pulmonary hypertension. ChemMedChem 4, 853–865, https://doi.org/10.1002/cmdc.200900014 (2009).
doi: 10.1002/cmdc.200900014 pubmed: 19263460
Pradhan, K. et al. Soluble guanylate cyclase stimulator riociguat and phosphodiesterase 5 inhibitor sildenafil ameliorate pulmonary hypertension due to left heart disease in mice. Int J Cardiol 216, 85–91, https://doi.org/10.1016/j.ijcard.2016.04.098 (2016).
doi: 10.1016/j.ijcard.2016.04.098 pubmed: 27140341
Bonderman, D. et al. Riociguat for patients with pulmonary hypertension caused by systolic left ventricular dysfunction: a phase IIb double-blind, randomized, placebo-controlled, dose-ranging hemodynamic study. Circulation 128, 502–511, https://doi.org/10.1161/CIRCULATIONAHA.113.001458 (2013).
doi: 10.1161/CIRCULATIONAHA.113.001458 pubmed: 23775260
Benke, K. et al. Pharmacological preconditioning with gemfibrozil preserves cardiac function after heart transplantation. Sci Rep 7, 14232, https://doi.org/10.1038/s41598-017-14587-3 (2017).
doi: 10.1038/s41598-017-14587-3 pubmed: 29079777 pmcid: 5660179
Ono, K. & Lindsey, E. S. Improved technique of heart transplantation in rats. J Thorac Cardiovasc Surg 57, 225–229 (1969).
doi: 10.1016/S0022-5223(19)42744-X
Benke, K. et al. Heterotopic Abdominal Rat Heart Transplantation as a Model to Investigate Volume Dependency of Myocardial Remodeling. Transplantation 101, 498–505, https://doi.org/10.1097/TP.0000000000001585 (2017).
doi: 10.1097/TP.0000000000001585 pubmed: 27906830
Sartoretto, J. L. et al. Regulation of VASP phosphorylation in cardiac myocytes: differential regulation by cyclic nucleotides and modulation of protein expression in diabetic and hypertrophic heart. Am J Physiol Heart Circ Physiol 297, H1697–1710, https://doi.org/10.1152/ajpheart.00595.2009 (2009).
doi: 10.1152/ajpheart.00595.2009 pubmed: 19734360 pmcid: 2781375
Finck, B. N. & Kelly, D. P. Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) regulatory cascade in cardiac physiology and disease. Circulation 115, 2540–2548, https://doi.org/10.1161/CIRCULATIONAHA.107.670588 (2007).
doi: 10.1161/CIRCULATIONAHA.107.670588 pubmed: 17502589
Lu, Z. et al. PGC-1 alpha regulates expression of myocardial mitochondrial antioxidants and myocardial oxidative stress after chronic systolic overload. Antioxid Redox Signal 13, 1011–1022, https://doi.org/10.1089/ars.2009.2940 (2010).
doi: 10.1089/ars.2009.2940 pubmed: 20406135 pmcid: 2959178
Liang, H. & Ward, W. F. PGC-1alpha: a key regulator of energy metabolism. Adv Physiol Educ 30, 145–151, https://doi.org/10.1152/advan.00052.2006 (2006).
doi: 10.1152/advan.00052.2006 pubmed: 17108241
Arany, Z. et al. Transverse aortic constriction leads to accelerated heart failure in mice lacking PPAR-gamma coactivator 1alpha. Proc Natl Acad Sci USA 103, 10086–10091, https://doi.org/10.1073/pnas.0603615103 (2006).
doi: 10.1073/pnas.0603615103 pubmed: 16775082
Valle, I., Alvarez-Barrientos, A., Arza, E., Lamas, S. & Monsalve, M. PGC-1alpha regulates the mitochondrial antioxidant defense system in vascular endothelial cells. Cardiovasc Res 66, 562–573, https://doi.org/10.1016/j.cardiores.2005.01.026 (2005).
doi: 10.1016/j.cardiores.2005.01.026 pubmed: 15914121
Aquilano, K. et al. p53 orchestrates the PGC-1alpha-mediated antioxidant response upon mild redox and metabolic imbalance. Antioxid Redox Signal 18, 386–399, https://doi.org/10.1089/ars.2012.4615 (2013).
doi: 10.1089/ars.2012.4615 pubmed: 22861165 pmcid: 3526895
Guo, Y. X. et al. Effects of nitric oxide on steroidogenesis and apoptosis in goat luteinized granulosa cells. Theriogenology 126, 55–62, https://doi.org/10.1016/j.theriogenology.2018.12.007 (2019).
doi: 10.1016/j.theriogenology.2018.12.007 pubmed: 30530158
Kalogeris, T. J., Baines, C. & Korthuis, R. J. Adenosine prevents TNFalpha-induced decrease in endothelial mitochondrial mass via activation of eNOS-PGC-1alpha regulatory axis. PLoS One 9, e98459, https://doi.org/10.1371/journal.pone.0098459 (2014).
doi: 10.1371/journal.pone.0098459 pubmed: 24914683 pmcid: 4051583
Borniquel, S., Valle, I., Cadenas, S., Lamas, S. & Monsalve, M. Nitric oxide regulates mitochondrial oxidative stress protection via the transcriptional coactivator PGC-1alpha. FASEB J 20, 1889–1891, https://doi.org/10.1096/fj.05-5189fje (2006).
doi: 10.1096/fj.05-5189fje pubmed: 16891621
Shah, R. C., Sanker, S., Wood, K. C., Durgin, B. G. & Straub, A. C. Redox regulation of soluble guanylyl cyclase. Nitric Oxide 76, 97–104, https://doi.org/10.1016/j.niox.2018.03.013 (2018).
doi: 10.1016/j.niox.2018.03.013 pubmed: 29578056 pmcid: 5916318
Agosto, M., Azrin, M., Singh, K., Jaffe, A. S. & Liang, B. T. Serum caspase-3 p17 fragment is elevated in patients with ST-segment elevation myocardial infarction: a novel observation. J Am Coll Cardiol 57, 220–221, https://doi.org/10.1016/j.jacc.2010.08.628 (2011).
doi: 10.1016/j.jacc.2010.08.628 pubmed: 21211695
Hausenloy, D. J. & Yellon, D. M. Ischaemic conditioning and reperfusion injury. Nat Rev Cardiol 13, 193–209, https://doi.org/10.1038/nrcardio.2016.5 (2016).
doi: 10.1038/nrcardio.2016.5 pubmed: 26843289
Cabrera-Fuentes, H. A. et al. RNase1 prevents the damaging interplay between extracellular RNA and tumour necrosis factor-alpha in cardiac ischaemia/reperfusion injury. Thromb Haemost 112, 1110–1119, https://doi.org/10.1160/TH14-08-0703 (2014).
doi: 10.1160/TH14-08-0703 pubmed: 25354936
Stenberg, P. E., McEver, R. P., Shuman, M. A., Jacques, Y. V. & Bainton, D. F. A platelet alpha-granule membrane protein (GMP-140) is expressed on the plasma membrane after activation. J Cell Biol 101, 880–886, https://doi.org/10.1083/jcb.101.3.880 (1985).
doi: 10.1083/jcb.101.3.880 pubmed: 2411738
Ahluwalia, A. et al. Antiinflammatory activity of soluble guanylate cyclase: cGMP-dependent down-regulation of P-selectin expression and leukocyte recruitment. Proc Natl Acad Sci USA 101, 1386–1391, https://doi.org/10.1073/pnas.0304264101 (2004).
doi: 10.1073/pnas.0304264101 pubmed: 14742866
Dore, M., Korthuis, R. J., Granger, D. N., Entman, M. L. & Smith, C. W. P-selectin mediates spontaneous leukocyte rolling in vivo. Blood 82, 1308–1316 (1993).
doi: 10.1182/blood.V82.4.1308.1308
Loganathan, S. et al. Effects of soluble guanylate cyclase activation on heart transplantation in a rat model. J Heart Lung Transplant 34, 1346–1353, https://doi.org/10.1016/j.healun.2015.05.006 (2015).
doi: 10.1016/j.healun.2015.05.006 pubmed: 26210750
Korkmaz-Icoz, S. et al. Prolonging hypothermic ischaemic cardiac and vascular storage by inhibiting the activation of the nuclear enzyme poly(adenosine diphosphate-ribose) polymerase. Eur J Cardiothorac Surg 51, 829–835, https://doi.org/10.1093/ejcts/ezw426 (2017).
doi: 10.1093/ejcts/ezw426 pubmed: 28204209
Li, S. et al. Donor Preconditioning After the Onset of Brain Death With Dopamine Derivate n-Octanoyl Dopamine Improves Early Posttransplant Graft Function in the Rat. Am J Transplant 17, 1802–1812, https://doi.org/10.1111/ajt.14207 (2017).
doi: 10.1111/ajt.14207 pubmed: 28117941
Li, S. et al. Acute ethanol exposure increases the susceptibility of the donor hearts to ischemia/reperfusion injury after transplantation in rats. PLoS One 7, e49237, https://doi.org/10.1371/journal.pone.0049237 (2012).
doi: 10.1371/journal.pone.0049237 pubmed: 23155471 pmcid: 3498334
Li, S. et al. Transplantation of donor hearts after circulatory or brain death in a rat model. J Surg Res 195, 315–324, https://doi.org/10.1016/j.jss.2014.12.038 (2015).
doi: 10.1016/j.jss.2014.12.038 pubmed: 25592272
Nemeth, B. T. et al. Cinaciguat prevents the development of pathologic hypertrophy in a rat model of left ventricular pressure overload. Sci Rep 6, 37166, https://doi.org/10.1038/srep37166 (2016).
doi: 10.1038/srep37166 pubmed: 27853261 pmcid: 5112572
Matyas, C. et al. The soluble guanylate cyclase activator cinaciguat prevents cardiac dysfunction in a rat model of type-1 diabetes mellitus. Cardiovasc Diabetol 14, 145, https://doi.org/10.1186/s12933-015-0309-x (2015).
doi: 10.1186/s12933-015-0309-x pubmed: 26520063 pmcid: 4628236
Matyas, C. et al. Comparison of speckle-tracking echocardiography with invasive hemodynamics for the detection of characteristic cardiac dysfunction in type-1 and type-2 diabetic rat models. Cardiovasc Diabetol 17, 13, https://doi.org/10.1186/s12933-017-0645-0 (2018).
doi: 10.1186/s12933-017-0645-0 pubmed: 29338775 pmcid: 5769218
Xu, Y. et al. Activated platelets contribute importantly to myocardial reperfusion injury. Am J Physiol Heart Circ Physiol 290, H692–699, https://doi.org/10.1152/ajpheart.00634.2005 (2006).
doi: 10.1152/ajpheart.00634.2005 pubmed: 16199480

Auteurs

Kálmán Benke (K)

Heart and Vascular Center, Semmelweis University, Budapest, Hungary. kalman.benke@gmail.com.
Department of Cardiac Surgery, University of Halle, Halle, Germany. kalman.benke@gmail.com.

Balázs Tamás Németh (BT)

Heart and Vascular Center, Semmelweis University, Budapest, Hungary.

Alex Ali Sayour (AA)

Heart and Vascular Center, Semmelweis University, Budapest, Hungary.

Klára Aliz Stark (KA)

Heart and Vascular Center, Semmelweis University, Budapest, Hungary.

Attila Oláh (A)

Heart and Vascular Center, Semmelweis University, Budapest, Hungary.

Mihály Ruppert (M)

Heart and Vascular Center, Semmelweis University, Budapest, Hungary.

Gábor Szabó (G)

Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany.
Department of Cardiac Surgery, University of Halle, Halle, Germany.

Sevil Korkmaz-Icöz (S)

Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany.

Eszter Mária Horváth (EM)

Department of Physiology, Semmelweis University, Budapest, Hungary.

Rita Benkő (R)

Department of Physiology, Semmelweis University, Budapest, Hungary.

István Hartyánszky (I)

Heart and Vascular Center, Semmelweis University, Budapest, Hungary.

Zoltán Szabolcs (Z)

Heart and Vascular Center, Semmelweis University, Budapest, Hungary.

Béla Merkely (B)

Heart and Vascular Center, Semmelweis University, Budapest, Hungary.

Tamás Radovits (T)

Heart and Vascular Center, Semmelweis University, Budapest, Hungary.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH