Stimulation of soluble guanylate cyclase improves donor organ function in rat heart transplantation.
Animals
Antioxidants
/ metabolism
Cardiotonic Agents
/ pharmacology
Cyclic GMP
/ metabolism
Cyclic GMP-Dependent Protein Kinases
/ metabolism
Enzyme Activators
/ pharmacology
Enzymes
/ genetics
Heart Transplantation
/ methods
Heart Ventricles
/ drug effects
Male
Nitric Oxide
/ metabolism
Pyrazoles
/ pharmacology
Pyrimidines
/ pharmacology
Rats, Inbred Lew
Signal Transduction
/ drug effects
Soluble Guanylyl Cyclase
/ metabolism
Tissue Donors
Ventricular Function
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
24 03 2020
24 03 2020
Historique:
received:
09
04
2019
accepted:
06
03
2020
entrez:
27
3
2020
pubmed:
27
3
2020
medline:
19
12
2020
Statut:
epublish
Résumé
Heart transplantation remains the definitive therapy of end-stage heart failure. Ischemia-reperfusion injury occurring during transplantation is a primary determinant of long-term outcome of heart transplantation and primary graft insufficiency. Modification of the nitric oxide/soluble guanylate cyclase/cyclic guanosine monophosphate signaling pathway appears to be one of the most promising among the pharmacological interventional options. We aimed at characterizing the cardio-protective effects of the soluble guanylate cyclase stimulator riociguat in a rat model of heterotopic heart transplantation. Donor Lewis rats were treated orally with either riociguat or placebo for two days (n = 9) in each transplanted group and (n = 7) in donor groups. Following explantation, hearts were heterotopically transplanted. After one hour reperfusion, left ventricular pressure-volume relations and coronary blood flow were recorded. Molecular biological measurements and histological examination were also completed. Left ventricular contractility (systolic pressure: 117 ± 13 vs. 48 ± 5 mmHg, p < 0.001; dP/dt
Identifiants
pubmed: 32210293
doi: 10.1038/s41598-020-62156-y
pii: 10.1038/s41598-020-62156-y
pmc: PMC7093516
doi:
Substances chimiques
Antioxidants
0
Cardiotonic Agents
0
Enzyme Activators
0
Enzymes
0
Pyrazoles
0
Pyrimidines
0
Nitric Oxide
31C4KY9ESH
Cyclic GMP-Dependent Protein Kinases
EC 2.7.11.12
Soluble Guanylyl Cyclase
EC 4.6.1.2
Cyclic GMP
H2D2X058MU
riociguat
RU3FE2Y4XI
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
5358Références
Dronavalli, V. B., Rogers, C. A. & Banner, N. R. Primary Cardiac Allograft Dysfunction-Validation of a Clinical Definition. Transplantation 99, 1919–1925, https://doi.org/10.1097/TP.0000000000000620 (2015).
doi: 10.1097/TP.0000000000000620
pubmed: 25742423
pmcid: 4548546
Methner, C. et al. Riociguat reduces infarct size and post-infarct heart failure in mouse hearts: insights from MRI/PET imaging. PLoS One 8, e83910, https://doi.org/10.1371/journal.pone.0083910 (2013).
doi: 10.1371/journal.pone.0083910
pubmed: 24391843
pmcid: 3877128
Dhalla, N. S., Elmoselhi, A. B., Hata, T. & Makino, N. Status of myocardial antioxidants in ischemia-reperfusion injury. Cardiovasc Res 47, 446–456 (2000).
doi: 10.1016/S0008-6363(00)00078-X
Inserte, J. & Garcia-Dorado, D. The cGMP/PKG pathway as a common mediator of cardioprotection: translatability and mechanism. Br J Pharmacol 172, 1996–2009, https://doi.org/10.1111/bph.12959 (2015).
doi: 10.1111/bph.12959
pubmed: 25297462
pmcid: 4386977
Frankenreiter, S. et al. cGMP-Elevating Compounds and Ischemic Conditioning Provide Cardioprotection Against Ischemia and Reperfusion Injury via Cardiomyocyte-Specific BK Channels. Circulation 136, 2337–2355, https://doi.org/10.1161/CIRCULATIONAHA.117.028723 (2017).
doi: 10.1161/CIRCULATIONAHA.117.028723
pubmed: 29051185
Korkmaz, S. et al. Pharmacological activation of soluble guanylate cyclase protects the heart against ischemic injury. Circulation 120, 677–686, https://doi.org/10.1161/CIRCULATIONAHA.109.870774 (2009).
doi: 10.1161/CIRCULATIONAHA.109.870774
pubmed: 19667237
Erdmann, E. et al. Cinaciguat, a soluble guanylate cyclase activator, unloads the heart but also causes hypotension in acute decompensated heart failure. Eur Heart J 34, 57–67, https://doi.org/10.1093/eurheartj/ehs196 (2013).
doi: 10.1093/eurheartj/ehs196
pubmed: 22778174
Frankenreiter, S. et al. Cardioprotection by ischemic postconditioning and cyclic guanosine monophosphate-elevating agents involves cardiomyocyte nitric oxide-sensitive guanylyl cyclase. Cardiovasc Res 114, 822–829, https://doi.org/10.1093/cvr/cvy039 (2018).
doi: 10.1093/cvr/cvy039
pubmed: 29438488
Grimminger, F. et al. First acute haemodynamic study of soluble guanylate cyclase stimulator riociguat in pulmonary hypertension. Eur Respir J 33, 785–792, https://doi.org/10.1183/09031936.00039808 (2009).
doi: 10.1183/09031936.00039808
pubmed: 19129292
Tsai, E. J. et al. Pressure-overload-induced subcellular relocalization/oxidation of soluble guanylyl cyclase in the heart modulates enzyme stimulation. Circ Res 110, 295–303, https://doi.org/10.1161/CIRCRESAHA.111.259242 (2012).
doi: 10.1161/CIRCRESAHA.111.259242
pubmed: 22095726
Mittendorf, J. et al. Discovery of riociguat (BAY 63-2521): a potent, oral stimulator of soluble guanylate cyclase for the treatment of pulmonary hypertension. ChemMedChem 4, 853–865, https://doi.org/10.1002/cmdc.200900014 (2009).
doi: 10.1002/cmdc.200900014
pubmed: 19263460
Pradhan, K. et al. Soluble guanylate cyclase stimulator riociguat and phosphodiesterase 5 inhibitor sildenafil ameliorate pulmonary hypertension due to left heart disease in mice. Int J Cardiol 216, 85–91, https://doi.org/10.1016/j.ijcard.2016.04.098 (2016).
doi: 10.1016/j.ijcard.2016.04.098
pubmed: 27140341
Bonderman, D. et al. Riociguat for patients with pulmonary hypertension caused by systolic left ventricular dysfunction: a phase IIb double-blind, randomized, placebo-controlled, dose-ranging hemodynamic study. Circulation 128, 502–511, https://doi.org/10.1161/CIRCULATIONAHA.113.001458 (2013).
doi: 10.1161/CIRCULATIONAHA.113.001458
pubmed: 23775260
Benke, K. et al. Pharmacological preconditioning with gemfibrozil preserves cardiac function after heart transplantation. Sci Rep 7, 14232, https://doi.org/10.1038/s41598-017-14587-3 (2017).
doi: 10.1038/s41598-017-14587-3
pubmed: 29079777
pmcid: 5660179
Ono, K. & Lindsey, E. S. Improved technique of heart transplantation in rats. J Thorac Cardiovasc Surg 57, 225–229 (1969).
doi: 10.1016/S0022-5223(19)42744-X
Benke, K. et al. Heterotopic Abdominal Rat Heart Transplantation as a Model to Investigate Volume Dependency of Myocardial Remodeling. Transplantation 101, 498–505, https://doi.org/10.1097/TP.0000000000001585 (2017).
doi: 10.1097/TP.0000000000001585
pubmed: 27906830
Sartoretto, J. L. et al. Regulation of VASP phosphorylation in cardiac myocytes: differential regulation by cyclic nucleotides and modulation of protein expression in diabetic and hypertrophic heart. Am J Physiol Heart Circ Physiol 297, H1697–1710, https://doi.org/10.1152/ajpheart.00595.2009 (2009).
doi: 10.1152/ajpheart.00595.2009
pubmed: 19734360
pmcid: 2781375
Finck, B. N. & Kelly, D. P. Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) regulatory cascade in cardiac physiology and disease. Circulation 115, 2540–2548, https://doi.org/10.1161/CIRCULATIONAHA.107.670588 (2007).
doi: 10.1161/CIRCULATIONAHA.107.670588
pubmed: 17502589
Lu, Z. et al. PGC-1 alpha regulates expression of myocardial mitochondrial antioxidants and myocardial oxidative stress after chronic systolic overload. Antioxid Redox Signal 13, 1011–1022, https://doi.org/10.1089/ars.2009.2940 (2010).
doi: 10.1089/ars.2009.2940
pubmed: 20406135
pmcid: 2959178
Liang, H. & Ward, W. F. PGC-1alpha: a key regulator of energy metabolism. Adv Physiol Educ 30, 145–151, https://doi.org/10.1152/advan.00052.2006 (2006).
doi: 10.1152/advan.00052.2006
pubmed: 17108241
Arany, Z. et al. Transverse aortic constriction leads to accelerated heart failure in mice lacking PPAR-gamma coactivator 1alpha. Proc Natl Acad Sci USA 103, 10086–10091, https://doi.org/10.1073/pnas.0603615103 (2006).
doi: 10.1073/pnas.0603615103
pubmed: 16775082
Valle, I., Alvarez-Barrientos, A., Arza, E., Lamas, S. & Monsalve, M. PGC-1alpha regulates the mitochondrial antioxidant defense system in vascular endothelial cells. Cardiovasc Res 66, 562–573, https://doi.org/10.1016/j.cardiores.2005.01.026 (2005).
doi: 10.1016/j.cardiores.2005.01.026
pubmed: 15914121
Aquilano, K. et al. p53 orchestrates the PGC-1alpha-mediated antioxidant response upon mild redox and metabolic imbalance. Antioxid Redox Signal 18, 386–399, https://doi.org/10.1089/ars.2012.4615 (2013).
doi: 10.1089/ars.2012.4615
pubmed: 22861165
pmcid: 3526895
Guo, Y. X. et al. Effects of nitric oxide on steroidogenesis and apoptosis in goat luteinized granulosa cells. Theriogenology 126, 55–62, https://doi.org/10.1016/j.theriogenology.2018.12.007 (2019).
doi: 10.1016/j.theriogenology.2018.12.007
pubmed: 30530158
Kalogeris, T. J., Baines, C. & Korthuis, R. J. Adenosine prevents TNFalpha-induced decrease in endothelial mitochondrial mass via activation of eNOS-PGC-1alpha regulatory axis. PLoS One 9, e98459, https://doi.org/10.1371/journal.pone.0098459 (2014).
doi: 10.1371/journal.pone.0098459
pubmed: 24914683
pmcid: 4051583
Borniquel, S., Valle, I., Cadenas, S., Lamas, S. & Monsalve, M. Nitric oxide regulates mitochondrial oxidative stress protection via the transcriptional coactivator PGC-1alpha. FASEB J 20, 1889–1891, https://doi.org/10.1096/fj.05-5189fje (2006).
doi: 10.1096/fj.05-5189fje
pubmed: 16891621
Shah, R. C., Sanker, S., Wood, K. C., Durgin, B. G. & Straub, A. C. Redox regulation of soluble guanylyl cyclase. Nitric Oxide 76, 97–104, https://doi.org/10.1016/j.niox.2018.03.013 (2018).
doi: 10.1016/j.niox.2018.03.013
pubmed: 29578056
pmcid: 5916318
Agosto, M., Azrin, M., Singh, K., Jaffe, A. S. & Liang, B. T. Serum caspase-3 p17 fragment is elevated in patients with ST-segment elevation myocardial infarction: a novel observation. J Am Coll Cardiol 57, 220–221, https://doi.org/10.1016/j.jacc.2010.08.628 (2011).
doi: 10.1016/j.jacc.2010.08.628
pubmed: 21211695
Hausenloy, D. J. & Yellon, D. M. Ischaemic conditioning and reperfusion injury. Nat Rev Cardiol 13, 193–209, https://doi.org/10.1038/nrcardio.2016.5 (2016).
doi: 10.1038/nrcardio.2016.5
pubmed: 26843289
Cabrera-Fuentes, H. A. et al. RNase1 prevents the damaging interplay between extracellular RNA and tumour necrosis factor-alpha in cardiac ischaemia/reperfusion injury. Thromb Haemost 112, 1110–1119, https://doi.org/10.1160/TH14-08-0703 (2014).
doi: 10.1160/TH14-08-0703
pubmed: 25354936
Stenberg, P. E., McEver, R. P., Shuman, M. A., Jacques, Y. V. & Bainton, D. F. A platelet alpha-granule membrane protein (GMP-140) is expressed on the plasma membrane after activation. J Cell Biol 101, 880–886, https://doi.org/10.1083/jcb.101.3.880 (1985).
doi: 10.1083/jcb.101.3.880
pubmed: 2411738
Ahluwalia, A. et al. Antiinflammatory activity of soluble guanylate cyclase: cGMP-dependent down-regulation of P-selectin expression and leukocyte recruitment. Proc Natl Acad Sci USA 101, 1386–1391, https://doi.org/10.1073/pnas.0304264101 (2004).
doi: 10.1073/pnas.0304264101
pubmed: 14742866
Dore, M., Korthuis, R. J., Granger, D. N., Entman, M. L. & Smith, C. W. P-selectin mediates spontaneous leukocyte rolling in vivo. Blood 82, 1308–1316 (1993).
doi: 10.1182/blood.V82.4.1308.1308
Loganathan, S. et al. Effects of soluble guanylate cyclase activation on heart transplantation in a rat model. J Heart Lung Transplant 34, 1346–1353, https://doi.org/10.1016/j.healun.2015.05.006 (2015).
doi: 10.1016/j.healun.2015.05.006
pubmed: 26210750
Korkmaz-Icoz, S. et al. Prolonging hypothermic ischaemic cardiac and vascular storage by inhibiting the activation of the nuclear enzyme poly(adenosine diphosphate-ribose) polymerase. Eur J Cardiothorac Surg 51, 829–835, https://doi.org/10.1093/ejcts/ezw426 (2017).
doi: 10.1093/ejcts/ezw426
pubmed: 28204209
Li, S. et al. Donor Preconditioning After the Onset of Brain Death With Dopamine Derivate n-Octanoyl Dopamine Improves Early Posttransplant Graft Function in the Rat. Am J Transplant 17, 1802–1812, https://doi.org/10.1111/ajt.14207 (2017).
doi: 10.1111/ajt.14207
pubmed: 28117941
Li, S. et al. Acute ethanol exposure increases the susceptibility of the donor hearts to ischemia/reperfusion injury after transplantation in rats. PLoS One 7, e49237, https://doi.org/10.1371/journal.pone.0049237 (2012).
doi: 10.1371/journal.pone.0049237
pubmed: 23155471
pmcid: 3498334
Li, S. et al. Transplantation of donor hearts after circulatory or brain death in a rat model. J Surg Res 195, 315–324, https://doi.org/10.1016/j.jss.2014.12.038 (2015).
doi: 10.1016/j.jss.2014.12.038
pubmed: 25592272
Nemeth, B. T. et al. Cinaciguat prevents the development of pathologic hypertrophy in a rat model of left ventricular pressure overload. Sci Rep 6, 37166, https://doi.org/10.1038/srep37166 (2016).
doi: 10.1038/srep37166
pubmed: 27853261
pmcid: 5112572
Matyas, C. et al. The soluble guanylate cyclase activator cinaciguat prevents cardiac dysfunction in a rat model of type-1 diabetes mellitus. Cardiovasc Diabetol 14, 145, https://doi.org/10.1186/s12933-015-0309-x (2015).
doi: 10.1186/s12933-015-0309-x
pubmed: 26520063
pmcid: 4628236
Matyas, C. et al. Comparison of speckle-tracking echocardiography with invasive hemodynamics for the detection of characteristic cardiac dysfunction in type-1 and type-2 diabetic rat models. Cardiovasc Diabetol 17, 13, https://doi.org/10.1186/s12933-017-0645-0 (2018).
doi: 10.1186/s12933-017-0645-0
pubmed: 29338775
pmcid: 5769218
Xu, Y. et al. Activated platelets contribute importantly to myocardial reperfusion injury. Am J Physiol Heart Circ Physiol 290, H692–699, https://doi.org/10.1152/ajpheart.00634.2005 (2006).
doi: 10.1152/ajpheart.00634.2005
pubmed: 16199480