Time-resolved fluorescence microscopy with phasor analysis for visualizing multicomponent topical drug distribution within human skin.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
24 03 2020
Historique:
received: 19 12 2019
accepted: 11 03 2020
entrez: 27 3 2020
pubmed: 27 3 2020
medline: 19 12 2020
Statut: epublish

Résumé

Understanding a drug candidate's pharmacokinetic (PK) parameters is a challenging but essential aspect of drug development. Investigating the penetration and distribution of a topical drug's active pharmaceutical ingredient (API) allows for evaluating drug delivery and efficacy, which is necessary to ensure drug viability. A topical gel (BPX-05) was recently developed to treat moderate to severe acne vulgaris by directly delivering the combination of the topical antibiotic minocycline and the retinoid tazarotene to the pilosebaceous unit of the dermis. In order to evaluate the uptake of APIs within human facial skin and confirm accurate drug delivery, a selective visualization method to monitor and quantify local drug distributions within the skin was developed. This approach uses fluorescence lifetime imaging microscopy (FLIM) paired with a multicomponent phasor analysis algorithm to visualize drug localization. As minocycline and tazarotene have distinct fluorescence lifetimes from the lifetime of the skin's autofluorescence, these two APIs are viable targets for distinct visualization via FLIM. Here, we demonstrate that the analysis of the resulting FLIM output can be used to determine local distributions of minocycline and tazarotene within the skin. This approach is generalizable and can be applied to many multicomponent fluorescence lifetime imaging targets that require cellular resolution and molecular specificity.

Identifiants

pubmed: 32210332
doi: 10.1038/s41598-020-62406-z
pii: 10.1038/s41598-020-62406-z
pmc: PMC7093415
doi:

Substances chimiques

Dermatologic Agents 0
Drug Combinations 0
Gels 0
Nicotinic Acids 0
tazarotene 81BDR9Y8PS
Minocycline FYY3R43WGO

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

5360

Subventions

Organisme : NIGMS NIH HHS
ID : T32 GM008313
Pays : United States

Références

Gregoriou, S., Kritsotaki, E., Katoulis, A. & Rigopoulos, D. Use of tazarotene foam for the treatment of acne vulgaris. Clin. Cosmet. Investig. Dermatol. 7, 165–170 (2014).
pubmed: 24920932 pmcid: 4043801
Gollnick, H. P. M. & Krautheim, A. Topical Treatment in Acne: Current Status and Future Aspects. Dermatology 206, 29–36 (2003).
doi: 10.1159/000067820
Jeong, S. et al. Visualization of drug distribution of a topical minocycline gel in human facial skin. Biomed. Opt. Express 9, 3434–3448 (2018).
doi: 10.1364/BOE.9.003434
Smith, K. & Leyden, J. J. Safety of doxycycline and minocycline: A systematic review. Clin. Ther. 27, 1329–1342 (2005).
doi: 10.1016/j.clinthera.2005.09.005
Goulden, V., Glass, D. & Cunliffe, W. J. Safety of long-term high-dose minocycline in the treatment of acne. Br. J. Dermatol. 134, 693–695 (1996).
doi: 10.1111/j.1365-2133.1996.tb06972.x
Okada, N. et al. Characterization of pigmented granules in minocycline-induced cutaneous pigmentation: observations using fluorescence microscopy and high-performance liquid chromatography. Br. J. Dermatol. 129, 403–407 (1993).
doi: 10.1111/j.1365-2133.1993.tb03166.x
Leyden, J. J. A review of the use of combination therapies for the treatment of acne vulgaris. J. Am. Acad. Dermatol. 49, S200–S210 (2003).
doi: 10.1067/S0190-9622(03)01154-X
Thielitz, A., Sidou, F. & Gollnick, H. Control of microcomedone formation throughout a maintenance treatment with adapalene gel, 0.1%. J. Eur. Acad. Dermatol. Venereol. 21, 747–753 (2007).
doi: 10.1111/j.1468-3083.2007.02190.x
Thielitz, A. & Gollnick, H. Topical Retinoids in Acne Vulgaris. Am. J. Clin. Dermatol. 9, 369–381 (2008).
doi: 10.2165/0128071-200809060-00003
Sorensen, I. S. et al. Combination of MALDI-MSI and cassette dosing for evaluation of drug distribution in human skin explant. Anal. Bioanal. Chem. 409, 4993–5005 (2017).
doi: 10.1007/s00216-017-0443-2
Yamada, M. et al. Using elongated microparticles to enhance tailorable nanoemulsion delivery in excised human skin and volunteers. J. Control. Release 288, 264–276 (2018).
doi: 10.1016/j.jconrel.2018.09.012
Alex, A. et al. In situ biodistribution and residency of a topical anti-inflammatory using fluorescence lifetime imaging microscopy. Br. J. Dermatol. 179, 1342–1350 (2018).
doi: 10.1111/bjd.16992
Raufast, V. & Mavon, A. Transfollicular delivery of linoleic acid in human scalp skin: permeation study and microautoradiographic analysis. Int. J. Cosmet. Sci. 28, 117–123 (2006).
doi: 10.1111/j.1467-2494.2006.00303.x
Fereidouni, F., Bader, A. N., Colonna, A. & Gerritsen, H. C. Phasor analysis of multiphoton spectral images distinguishes autofluorescence components of in vivo human skin. J. Biophotonics 7, 589–596 (2014).
doi: 10.1002/jbio.201200244
Stringari, C. et al. Phasor approach to fluorescence lifetime microscopy distinguishes different metabolic states of germ cells in a live tissue. Proc. Natl. Acad. Sci. 108, 13582–13587 (2011).
doi: 10.1073/pnas.1108161108
Ranjit, S., Malacrida, L., Jameson, D. M. & Gratton, E. Fit-free analysis of fluorescence lifetime imaging data using the phasor approach. Nat. Protoc. 13, 1979–2004 (2018).
doi: 10.1038/s41596-018-0026-5
Digman, M. A., Caiolfa, V. R., Zamai, M. & Gratton, E. The phasor approach to fluorescence lifetime imaging analysis. Biophys. J. 94, L14–16 (2008).
doi: 10.1529/biophysj.107.120154
Colyer, R. et al. Phasor imaging with a widefield photon-counting detector. J. Biomed. Opt. 17, 016008 (2012).
doi: 10.1117/1.JBO.17.1.016008
Osseiran, S. et al. Non-Euclidean phasor analysis for quantification of oxidative stress in ex vivo human skin exposed to sun filters using fluorescence lifetime imaging microscopy. J. Biomed. Opt. 22, 1–10 (2017).
doi: 10.1117/1.JBO.22.12.125004
Mahalanobis, P. C. On the Generalized Distance in Statistics. Proc. Natl. Inst. Sci. 2, 49–55 (1936).
Chawla, N. V., Bowyer, K. W., Hall, L. O. & Kegelmeyer, W. P. SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002).
doi: 10.1613/jair.953
Lemaître, G., Nogueira, F. & Aridas, C. K. Imbalanced-learn: A python toolbox to tackle the curse of imbalanced datasets in machine learning. J. Mach. Learn. Res. 18, 559–563 (2017).
Skala, M. C. et al. In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. Proc. Natl. Acad. Sci. 104, 19494–19499 (2007).
doi: 10.1073/pnas.0708425104
Huang, S., Heikal, A. A. & Webb, W. W. Two-Photon Fluorescence Spectroscopy and Microscopy of NAD(P)H and Flavoprotein. Biophys. J. 82, 2811–2825 (2002).
doi: 10.1016/S0006-3495(02)75621-X
Shirshin, E. A. et al. Two-photon autofluorescence lifetime imaging of human skin papillary dermis in vivo: assessment of blood capillaries and structural proteins localization. Sci. Rep. 7, 1171 (2017).
doi: 10.1038/s41598-017-01238-w
Hermsmeier, M. et al. Characterization of human cutaneous tissue autofluorescence: implications in topical drug delivery studies with fluorescence microscopy. Biomed. Opt. Express 9, 5400–5418 (2018).
doi: 10.1364/BOE.9.005400
Poulon, F. et al. Real-time Brain Tumor imaging with endogenous fluorophores: a diagnosis proof-of-concept study on fresh human samples. Sci. Rep. 8, 14888 (2018).
doi: 10.1038/s41598-018-33134-2
Koenig, K. Hybrid multiphoton multimodal tomography of in vivo human skin. IntraVital 1, 11–26 (2012).
doi: 10.4161/intv.21938

Auteurs

Sinyoung Jeong (S)

Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.

Daniel A Greenfield (DA)

Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
Harvard Biophysics Graduate Program, Boston, MA, 02115, USA.

Maiko Hermsmeier (M)

BioPharmX, Inc., 115 Nicholson Ln, San Jose, CA, 95134, USA.

Akira Yamamoto (A)

BioPharmX, Inc., 115 Nicholson Ln, San Jose, CA, 95134, USA.

Xin Chen (X)

BioPharmX, Inc., 115 Nicholson Ln, San Jose, CA, 95134, USA.

Kin F Chan (KF)

BioPharmX, Inc., 115 Nicholson Ln, San Jose, CA, 95134, USA.

Conor L Evans (CL)

Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA. Evans.Conor@mgh.harvard.edu.
Harvard Biophysics Graduate Program, Boston, MA, 02115, USA. Evans.Conor@mgh.harvard.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH