Time-resolved fluorescence microscopy with phasor analysis for visualizing multicomponent topical drug distribution within human skin.
Administration, Topical
Algorithms
Dermatologic Agents
/ administration & dosage
Drug Combinations
Face
Fluorescence
Gels
/ administration & dosage
Humans
Image Processing, Computer-Assisted
Microscopy, Fluorescence
/ methods
Minocycline
/ administration & dosage
Molecular Imaging
/ methods
Nicotinic Acids
/ administration & dosage
Skin
/ chemistry
Spectrometry, Fluorescence
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
24 03 2020
24 03 2020
Historique:
received:
19
12
2019
accepted:
11
03
2020
entrez:
27
3
2020
pubmed:
27
3
2020
medline:
19
12
2020
Statut:
epublish
Résumé
Understanding a drug candidate's pharmacokinetic (PK) parameters is a challenging but essential aspect of drug development. Investigating the penetration and distribution of a topical drug's active pharmaceutical ingredient (API) allows for evaluating drug delivery and efficacy, which is necessary to ensure drug viability. A topical gel (BPX-05) was recently developed to treat moderate to severe acne vulgaris by directly delivering the combination of the topical antibiotic minocycline and the retinoid tazarotene to the pilosebaceous unit of the dermis. In order to evaluate the uptake of APIs within human facial skin and confirm accurate drug delivery, a selective visualization method to monitor and quantify local drug distributions within the skin was developed. This approach uses fluorescence lifetime imaging microscopy (FLIM) paired with a multicomponent phasor analysis algorithm to visualize drug localization. As minocycline and tazarotene have distinct fluorescence lifetimes from the lifetime of the skin's autofluorescence, these two APIs are viable targets for distinct visualization via FLIM. Here, we demonstrate that the analysis of the resulting FLIM output can be used to determine local distributions of minocycline and tazarotene within the skin. This approach is generalizable and can be applied to many multicomponent fluorescence lifetime imaging targets that require cellular resolution and molecular specificity.
Identifiants
pubmed: 32210332
doi: 10.1038/s41598-020-62406-z
pii: 10.1038/s41598-020-62406-z
pmc: PMC7093415
doi:
Substances chimiques
Dermatologic Agents
0
Drug Combinations
0
Gels
0
Nicotinic Acids
0
tazarotene
81BDR9Y8PS
Minocycline
FYY3R43WGO
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
5360Subventions
Organisme : NIGMS NIH HHS
ID : T32 GM008313
Pays : United States
Références
Gregoriou, S., Kritsotaki, E., Katoulis, A. & Rigopoulos, D. Use of tazarotene foam for the treatment of acne vulgaris. Clin. Cosmet. Investig. Dermatol. 7, 165–170 (2014).
pubmed: 24920932
pmcid: 4043801
Gollnick, H. P. M. & Krautheim, A. Topical Treatment in Acne: Current Status and Future Aspects. Dermatology 206, 29–36 (2003).
doi: 10.1159/000067820
Jeong, S. et al. Visualization of drug distribution of a topical minocycline gel in human facial skin. Biomed. Opt. Express 9, 3434–3448 (2018).
doi: 10.1364/BOE.9.003434
Smith, K. & Leyden, J. J. Safety of doxycycline and minocycline: A systematic review. Clin. Ther. 27, 1329–1342 (2005).
doi: 10.1016/j.clinthera.2005.09.005
Goulden, V., Glass, D. & Cunliffe, W. J. Safety of long-term high-dose minocycline in the treatment of acne. Br. J. Dermatol. 134, 693–695 (1996).
doi: 10.1111/j.1365-2133.1996.tb06972.x
Okada, N. et al. Characterization of pigmented granules in minocycline-induced cutaneous pigmentation: observations using fluorescence microscopy and high-performance liquid chromatography. Br. J. Dermatol. 129, 403–407 (1993).
doi: 10.1111/j.1365-2133.1993.tb03166.x
Leyden, J. J. A review of the use of combination therapies for the treatment of acne vulgaris. J. Am. Acad. Dermatol. 49, S200–S210 (2003).
doi: 10.1067/S0190-9622(03)01154-X
Thielitz, A., Sidou, F. & Gollnick, H. Control of microcomedone formation throughout a maintenance treatment with adapalene gel, 0.1%. J. Eur. Acad. Dermatol. Venereol. 21, 747–753 (2007).
doi: 10.1111/j.1468-3083.2007.02190.x
Thielitz, A. & Gollnick, H. Topical Retinoids in Acne Vulgaris. Am. J. Clin. Dermatol. 9, 369–381 (2008).
doi: 10.2165/0128071-200809060-00003
Sorensen, I. S. et al. Combination of MALDI-MSI and cassette dosing for evaluation of drug distribution in human skin explant. Anal. Bioanal. Chem. 409, 4993–5005 (2017).
doi: 10.1007/s00216-017-0443-2
Yamada, M. et al. Using elongated microparticles to enhance tailorable nanoemulsion delivery in excised human skin and volunteers. J. Control. Release 288, 264–276 (2018).
doi: 10.1016/j.jconrel.2018.09.012
Alex, A. et al. In situ biodistribution and residency of a topical anti-inflammatory using fluorescence lifetime imaging microscopy. Br. J. Dermatol. 179, 1342–1350 (2018).
doi: 10.1111/bjd.16992
Raufast, V. & Mavon, A. Transfollicular delivery of linoleic acid in human scalp skin: permeation study and microautoradiographic analysis. Int. J. Cosmet. Sci. 28, 117–123 (2006).
doi: 10.1111/j.1467-2494.2006.00303.x
Fereidouni, F., Bader, A. N., Colonna, A. & Gerritsen, H. C. Phasor analysis of multiphoton spectral images distinguishes autofluorescence components of in vivo human skin. J. Biophotonics 7, 589–596 (2014).
doi: 10.1002/jbio.201200244
Stringari, C. et al. Phasor approach to fluorescence lifetime microscopy distinguishes different metabolic states of germ cells in a live tissue. Proc. Natl. Acad. Sci. 108, 13582–13587 (2011).
doi: 10.1073/pnas.1108161108
Ranjit, S., Malacrida, L., Jameson, D. M. & Gratton, E. Fit-free analysis of fluorescence lifetime imaging data using the phasor approach. Nat. Protoc. 13, 1979–2004 (2018).
doi: 10.1038/s41596-018-0026-5
Digman, M. A., Caiolfa, V. R., Zamai, M. & Gratton, E. The phasor approach to fluorescence lifetime imaging analysis. Biophys. J. 94, L14–16 (2008).
doi: 10.1529/biophysj.107.120154
Colyer, R. et al. Phasor imaging with a widefield photon-counting detector. J. Biomed. Opt. 17, 016008 (2012).
doi: 10.1117/1.JBO.17.1.016008
Osseiran, S. et al. Non-Euclidean phasor analysis for quantification of oxidative stress in ex vivo human skin exposed to sun filters using fluorescence lifetime imaging microscopy. J. Biomed. Opt. 22, 1–10 (2017).
doi: 10.1117/1.JBO.22.12.125004
Mahalanobis, P. C. On the Generalized Distance in Statistics. Proc. Natl. Inst. Sci. 2, 49–55 (1936).
Chawla, N. V., Bowyer, K. W., Hall, L. O. & Kegelmeyer, W. P. SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002).
doi: 10.1613/jair.953
Lemaître, G., Nogueira, F. & Aridas, C. K. Imbalanced-learn: A python toolbox to tackle the curse of imbalanced datasets in machine learning. J. Mach. Learn. Res. 18, 559–563 (2017).
Skala, M. C. et al. In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. Proc. Natl. Acad. Sci. 104, 19494–19499 (2007).
doi: 10.1073/pnas.0708425104
Huang, S., Heikal, A. A. & Webb, W. W. Two-Photon Fluorescence Spectroscopy and Microscopy of NAD(P)H and Flavoprotein. Biophys. J. 82, 2811–2825 (2002).
doi: 10.1016/S0006-3495(02)75621-X
Shirshin, E. A. et al. Two-photon autofluorescence lifetime imaging of human skin papillary dermis in vivo: assessment of blood capillaries and structural proteins localization. Sci. Rep. 7, 1171 (2017).
doi: 10.1038/s41598-017-01238-w
Hermsmeier, M. et al. Characterization of human cutaneous tissue autofluorescence: implications in topical drug delivery studies with fluorescence microscopy. Biomed. Opt. Express 9, 5400–5418 (2018).
doi: 10.1364/BOE.9.005400
Poulon, F. et al. Real-time Brain Tumor imaging with endogenous fluorophores: a diagnosis proof-of-concept study on fresh human samples. Sci. Rep. 8, 14888 (2018).
doi: 10.1038/s41598-018-33134-2
Koenig, K. Hybrid multiphoton multimodal tomography of in vivo human skin. IntraVital 1, 11–26 (2012).
doi: 10.4161/intv.21938