Controlled Quantum Dot Formation in Atomically Engineered Graphene Nanoribbon Field-Effect Transistors.
Coulomb blockade
Raman spectroscopy
device integration
graphene nanoribbons
molecular spectroscopy
Journal
ACS nano
ISSN: 1936-086X
Titre abrégé: ACS Nano
Pays: United States
ID NLM: 101313589
Informations de publication
Date de publication:
26 May 2020
26 May 2020
Historique:
pubmed:
1
4
2020
medline:
1
4
2020
entrez:
1
4
2020
Statut:
ppublish
Résumé
Graphene nanoribbons (GNRs) have attracted strong interest from researchers worldwide, as they constitute an emerging class of quantum-designed materials. The major challenges toward their exploitation in electronic applications include reliable contacting, complicated by their small size (<50 nm), and the preservation of their physical properties upon device integration. In this combined experimental and theoretical study, we report on the quantum dot behavior of atomically precise GNRs integrated in a device geometry. The devices consist of a film of aligned five-atom-wide GNRs (5-AGNRs) transferred onto graphene electrodes with a sub 5 nm nanogap. We demonstrate that these narrow-bandgap 5-AGNRs exhibit metal-like behavior at room temperature and single-electron transistor behavior for temperatures below 150 K. By performing spectroscopy of the molecular levels at 13 K, we obtain addition energies in the range of 200-300 meV. DFT calculations predict comparable addition energies and reveal the presence of two electronic states within the bandgap of infinite ribbons when the finite length of the 5-AGNR is accounted for. By demonstrating the preservation of the 5-AGNRs' molecular levels upon device integration, as demonstrated by transport spectroscopy, our study provides a critical step forward in the realization of more exotic GNR-based nanoelectronic devices.
Identifiants
pubmed: 32223259
doi: 10.1021/acsnano.0c00604
pmc: PMC7254832
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
5754-5762Subventions
Organisme : Medical Research Council
ID : MR/S015329/2
Pays : United Kingdom
Références
Nature. 2018 May;557(7707):691-695
pubmed: 29849157
Nanotechnology. 2018 Sep 14;29(37):373001
pubmed: 29926808
J Am Chem Soc. 2017 Jul 19;139(28):9483-9486
pubmed: 28650622
Nano Lett. 2017 Jul 12;17(7):4277-4283
pubmed: 28603996
ACS Nano. 2019 Nov 26;13(11):13083-13091
pubmed: 31573799
Sci Adv. 2018 Feb 16;4(2):eaaq0582
pubmed: 29464209
ACS Nano. 2017 Jun 27;11(6):5325-5331
pubmed: 28423272
Nano Lett. 2018 Jan 10;18(1):175-181
pubmed: 29215893
Nat Commun. 2015 Dec 14;6:10177
pubmed: 26658960
Proc Natl Acad Sci U S A. 2015 Mar 3;112(9):2658-63
pubmed: 25730863
Nano Lett. 2017 Apr 12;17(4):2197-2203
pubmed: 28301723
Chem Soc Rev. 2015 Feb 21;44(4):902-19
pubmed: 25310767
Nature. 2018 Aug;560(7717):209-213
pubmed: 30089919
ACS Nano. 2012 Aug 28;6(8):6930-5
pubmed: 22853456
Nat Nanotechnol. 2019 Oct;14(10):957-961
pubmed: 31527843
Nature. 2004 May 27;429(6990):389-92
pubmed: 15164056
Nat Commun. 2017 Sep 21;8(1):633
pubmed: 28935943
Phys Rev Lett. 2007 Nov 2;99(18):186801
pubmed: 17995426
Nano Lett. 2011 Nov 9;11(11):4607-11
pubmed: 22011188
Nature. 2010 Jul 22;466(7305):470-3
pubmed: 20651687
Nanotechnology. 2019 Nov 28;31(13):135003
pubmed: 31778992
Nano Lett. 2017 Jul 12;17(7):4029-4037
pubmed: 28358214
Science. 2016 Feb 26;351(6276):957-61
pubmed: 26917767
Nanoscale. 2017 Nov 16;9(44):17312-17317
pubmed: 29091090
ACS Nano. 2017 Feb 28;11(2):1380-1388
pubmed: 28129507
ACS Nano. 2013 Jul 23;7(7):6123-8
pubmed: 23746141
Phys Rev Lett. 2006 Feb 24;96(7):076605
pubmed: 16606120
Nanoscale. 2014 Jul 7;6(13):7249-54
pubmed: 24898877
J Am Chem Soc. 2016 Nov 30;138(47):15488-15496
pubmed: 27933922