Crosstalk reduction for multi-channel optical phase metrology.


Journal

Optics express
ISSN: 1094-4087
Titre abrégé: Opt Express
Pays: United States
ID NLM: 101137103

Informations de publication

Date de publication:
30 Mar 2020
Historique:
entrez: 1 4 2020
pubmed: 1 4 2020
medline: 1 4 2020
Statut: ppublish

Résumé

Digitally enhanced heterodyne interferometry (DEHI) combines the sub-wavelength displacement measurements of conventional laser interferometry with the multiplexing capabilities of spread-spectrum modulation techniques to discriminate between multiple electric fields at a single photodetector. Technologies that benefit from DEHI include optical phased arrays, which require the simultaneous phase measurement of a large number of electric fields. A consequence of measuring the phase of multiple electric fields is the introduction of crosstalk, which can degrade measurement precision. This work analytically and experimentally investigates the crosstalk when using DEHI to measure the phase of an arbitrarily large number of electric fields at a single photodetector. Also considered is the practical limit the dynamic range of the photodetector and shot noise imposes on the number of electric fields that can be discriminated. We describe how to minimize crosstalk by design. Experimental results demonstrate up to 55 dB suppression of crosstalk between two electric fields with a phase measurement bandwidth of 20 kHz and 1-10 pm/Hz displacement sensitivity for audio frequencies. Additionally, we demonstrate scaling of crosstalk proportional to the square-root of the number of electric fields when using an M-sequence modulation. Based on this analysis, we estimate that digitally enhanced heterodyne interferometry should be capable of measuring the phase of several hundreds of electric fields at a single photodetector while maintaining the same measurement bandwidth.

Identifiants

pubmed: 32225626
pii: 429470
doi: 10.1364/OE.388381
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

10400-10424

Auteurs

Classifications MeSH