Nanocatalosomes as Plasmonic Bilayer Shells with Interlayer Catalytic Nanospaces for Solar-Light-Induced Reactions.
Suzuki-Miyaura cross-coupling
bilayer structures
nanocatalysts
plasmonic-catalytic materials
solar light
Journal
Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543
Informations de publication
Date de publication:
08 Jun 2020
08 Jun 2020
Historique:
received:
29
01
2020
pubmed:
3
4
2020
medline:
3
4
2020
entrez:
3
4
2020
Statut:
ppublish
Résumé
Interest and challenges remain in designing and synthesizing catalysts with nature-like complexity at few-nm scale to harness unprecedented functionalities by using sustainable solar light. We introduce "nanocatalosomes"-a bio-inspired bilayer-vesicular design of nanoreactor with metallic bilayer shell-in-shell structure, having numerous controllable confined cavities within few-nm interlayer space, customizable with different noble metals. The intershell-confined plasmonically coupled hot-nanospaces within the few-nm cavities play a pivotal role in harnessing catalytic effects for various organic transformations, as demonstrated by "acceptorless dehydrogenation", "Suzuki-Miyaura cross-coupling" and "alkynyl annulation" affording clean conversions and turnover frequencies (TOFs) at least one order of magnitude higher than state-of-the-art Au-nanorod-based plasmonic catalysts. This work paves the way towards next-generation nanoreactors for chemical transformations with solar energy.
Identifiants
pubmed: 32237185
doi: 10.1002/anie.202001531
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
9460-9469Subventions
Organisme : National Research Foundation of Korea
ID : NRF-2016R1A3B1907559
Informations de copyright
© 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Références
A. Küchler, M. Yoshimoto, S. Luginbühl, F. Mavelli, P. Walde, Nat. Nanotechnol. 2016, 11, 409-419.
R. J. Conrado, J. D. Varner, M. P. DeLisa, Curr. Opin. Biotechnol. 2008, 19, 492-499.
H. Zhao, S. Sen, T. Udayabhaskararao, M. Sawczyk, K. Kučanda, D. Manna, P. K. Kundu, J.-W. Lee, P. Král, R. Klajn, Nat. Nanotechnol. 2016, 11, 82-88.
S. Li, J. Liu, N. S. Ramesar, H. Heinz, L. Xu, C. Xu, N. A. Kotov, Nat. Commun. 2019, 10, 4826.
M. Yang, H. Chan, G. Zhao, J. H. Bahng, P. Zhang, P. Král, N. A. Kotov, Nat. Chem. 2017, 9, 287-294.
N. Kornienko, J. Z. Zhang, K. K. Sakimoto, P. Yang, E. Reisner, Nat. Nanotechnol. 2018, 13, 890-899.
L. Zhang, L. T. Roling, X. Wang, M. Vara, M. Chi, J. Liu, S.-I. Choi, J. Park, J. A. Herron, Z. Xie, M. Mavrikakis, Y. Xia, Science 2015, 349, 412-416.
L. Polavarapu, D. Zanaga, T. Altantzis, S. Rodal-Cedeira, I. Pastoriza-Santos, J. Pérez-Juste, S. Bals, L. M. Liz-Marzán, J. Am. Chem. Soc. 2016, 138, 11453-11456.
Y. Jin, X. Gao, Nat. Nanotechnol. 2009, 4, 571-576.
H. Tianou, W. Wang, X. Yang, Z. Cao, Q. Kuang, Z. Wang, Z. Shan, M. Jin, Y. Yin, Nat. Commun. 2017, 8, 1261.
L. Zhang, Q. Fan, X. Sha, P. Zhong, J. Zhang, Y. Yin, C. Gao, Chem. Sci. 2017, 8, 6103-6110.
L. Wang, Y. Yamauchi, J. Am. Chem. Soc. 2013, 135, 16762-16765.
L. Yu, X. Y. Yu, X. W. Lou, Adv. Mater. 2018, 30, 1800939.
M. Dhiman, A. Maity, A. Das, R. Belgamwar, B. Chalke, Y. Lee, K. Sim, J.-M. Nam, V. Polshettiwar, Chem. Sci. 2019, 10, 6594-6603.
B. Li, H. C. Zeng, Adv. Mater. 2019, 31, 1801104.
G. Prieto, H. Tüysüz, N. Duyckaerts, J. Knossalla, G.-H. Wang, F. Schüth, Chem. Rev. 2016, 116, 14056-14119.
H. Wu, P. Wang, H. He, Y. Jin, Nano Res. 2012, 5, 135-144.
M. S. Zielinski, J.-W. Choi, T. L. Grange, M. Modestino, S. M. H. Hashemi, Y. Pu, S. Birkhold, J. A. Hubbell, D. Psaltis, Nano Lett. 2016, 16, 2159-2167.
S. Jeong, M.-W. Kim, Y.-R. Jo, N.-Y. Kim, D. Kang, S. Y. Lee, S.-Y. Yim, B.-J. Kim, J. H. Kim, ACS Appl. Mater. Interfaces 2019, 11, 44458-44465.
M. L. Brongersma, N. J. Halas, P. Nordlander, Nat. Nanotechnol. 2015, 10, 25-34.
A. Kumar, S. Kumar, W.-K. Rhim, G.-H. Kim, J.-M. Nam, J. Am. Chem. Soc. 2014, 136, 16317-16325.
A. Kumar, S. Kumar, N. Kumari, S. H. Lee, J. Han, I. J. Michael, Y.-K. Cho, I. S. Lee, ACS Catal. 2019, 9, 977-990.
C. Vázquez-Vázquez, B. Vaz, V. Giannini, M. Pérez-Lorenzo, R. A. Alvarez-Puebla, M. A. Correa-Duarte, J. Am. Chem. Soc. 2013, 135, 13616-13619.
G. Yu, J. Qian, P. Zhang, B. Zhang, W. Zhang, W. Yan, G. Liu, Nat. Commun. 2019, 10, 4912.
E. Cortés, W. Xie, J. Cambiasso, A. S. Jermyn, R. Sundararaman, P. Narang, S. Schlücker, S. A. Maier, Nat. Commun. 2017, 8, 14880.
K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, C. Gao, Nano Lett. 2016, 16, 3675-3681.
Y.-F. Huang, M. Zhang, L.-B. Zhao, J.-M. Feng, D.-Y. Wu, B. Ren, Z.-Q. Tian, Angew. Chem. Int. Ed. 2014, 53, 2353-2357;
Angew. Chem. 2014, 126, 2385-2389.
C. Boerigter, U. Aslam, S. Linic, ACS Nano 2016, 10, 6108-6115.
C. Deraedt, R. Ye, W. T. Ralston, F. D. Toste, G. A. Somorjai, J. Am. Chem. Soc. 2017, 139, 18084-18092.
G. Jaiswal, V. G. Landge, D. Jagadeesan, E. Balaraman, Nat. Commun. 2017, 8, 2147.
M. Zheng, J. Shi, T. Yuan, X. Wang, Angew. Chem. Int. Ed. 2018, 57, 5487-5491;
Angew. Chem. 2018, 130, 5585-5589.
Y. Han, Z. Wang, R. Xu, W. Zhang, W. Chen, L. Zheng, J. Zhang, J. Luo, K. Wu, Y. Zhu, C. Chen, Q. Peng, Q. Liu, P. Hu, D. Wang, Y. Li, Angew. Chem. Int. Ed. 2018, 57, 11262-11266;
Angew. Chem. 2018, 130, 11432-11436.
X. Huang, Y. Li, Y. Chen, H. Zhou, X. Duan, Y. Huang, Angew. Chem. Int. Ed. 2013, 52, 6063-6067;
Angew. Chem. 2013, 125, 6179-6183.
S. Sarina, H. Zhu, E. Jaatinen, Q. Xiao, H. Liu, J. Jia, C. Chen, J. Zhao, J. Am. Chem. Soc. 2013, 135, 5793-5801.
J. Guo, Y. Zhang, L. Shi, Y. Zhu, M. F. Mideksa, K. Hou, W. Zhao, D. Wang, M. Zhao, X. Zhang, J. Lv, J. Zhang, X. Wang, Z. Tang, J. Am. Chem. Soc. 2017, 139, 17964-17972.
S. Lu, Y. Hu, S. Wan, R. McCaffrey, Y. Jin, H. Gu, W. Zhang, J. Am. Chem. Soc. 2017, 139, 17082-17088.
C. Vidal, M. Tomás-Gamasa, P. Destito, F. López, J. L. Mascareñas, Nat. Commun. 2018, 9, 1913.
Z. Barikbin, M. T. Rahman, S. A. Khan, Small 2012, 8, 2152-2157.
J. H. Do, H. N. Kim, J. Yoon, J. S. Kim, H.-J. Kim, Org. Lett. 2010, 12, 932-934.
J. H. Koo, A. Kumar, S. Lee, X. Jin, H. Jeong, J. Kim, I. S. Lee, Chem. Mater. 2018, 30, 3010-3018.
D.-K. Lim, K.-S. Jeon, J.-H. Hwang, H. Kim, S. Kwon, Y. D. Suh, J.-M. Nam, Nat. Nanotechnol. 2011, 6, 452-460.
E. A. Pozzi, A. B. Zrimsek, C. M. Lethiec, G. C. Schatz, M. C. Hersam, R. P. Van Duyne, J. Phys. Chem. C 2015, 119, 21116-21124.
M. Aioub, S. R. Panikkanvalappil, M. A. El-Sayed, ACS Nano 2017, 11, 579-586.
S. Murahashi, N. Yoshimura, T. Tsumiyama, T. Kojima, J. Am. Chem. Soc. 1983, 105, 5002-5011.
A. M. Pérez-López, B. Rubio-Ruiz, V. Sebastián, L. Hamilton, C. Adam, T. L. Bray, S. Irusta, P. M. Brennan, G. C. Lloyd-Jones, D. Sieger, J. Santamaría, A. Unciti-Broceta, Angew. Chem. Int. Ed. 2017, 56, 12548-12552;
Angew. Chem. 2017, 129, 12722-12726.
A. Zhou, D. F. Swearer, C. Zhang, H. Robatjazi, H. Zhao, L. Henderson, L. Dong, P. Christopher, E. A. Carter, P. Nordlander, N. J. Halas, Science 2018, 362, 69-72.
X. Zhang, X. Li, M. E. Reish, D. Zhang, N. Q. Su, Y. Gutiérrez, F. Moreno, W. Yang, H. O. Everitt, J. Liu, Nano Lett. 2018, 18, 1714-1723.
M. Mahmoudi, S. E. Lohse, C. J. Murphy, A. Fathizadeh, A. Montazeri, K. S. Suslick, Nano Lett. 2014, 14, 6-12.
L. Gao, R. Liu, F. Gao, Y. Wang, X. Jiang, X. Gao, ACS Nano 2014, 8, 7260-7271.