A salvage pathway maintains highly functional respiratory complex I.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
02 04 2020
Historique:
received: 09 08 2019
accepted: 05 03 2020
entrez: 4 4 2020
pubmed: 4 4 2020
medline: 25 7 2020
Statut: epublish

Résumé

Regulation of the turnover of complex I (CI), the largest mitochondrial respiratory chain complex, remains enigmatic despite huge advancement in understanding its structure and the assembly. Here, we report that the NADH-oxidizing N-module of CI is turned over at a higher rate and largely independently of the rest of the complex by mitochondrial matrix protease ClpXP, which selectively removes and degrades damaged subunits. The observed mechanism seems to be a safeguard against the accumulation of dysfunctional CI arising from the inactivation of the N-module subunits due to attrition caused by its constant activity under physiological conditions. This CI salvage pathway maintains highly functional CI through a favorable mechanism that demands much lower energetic cost than de novo synthesis and reassembly of the entire CI. Our results also identify ClpXP activity as an unforeseen target for therapeutic interventions in the large group of mitochondrial diseases characterized by the CI instability.

Identifiants

pubmed: 32242014
doi: 10.1038/s41467-020-15467-7
pii: 10.1038/s41467-020-15467-7
pmc: PMC7118099
doi:

Substances chimiques

Protein Subunits 0
CLPP protein, mouse EC 3.4.21.92
Endopeptidase Clp EC 3.4.21.92
Electron Transport Complex I EC 7.1.1.2

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1643

Références

Brandt, U. Energy converting NADH:quinone oxidoreductase (complex I). Annu. Rev. Biochem. 75, 69–92 (2006).
doi: 10.1146/annurev.biochem.75.103004.142539
Hirst, J. Mitochondrial complex I. Annu. Rev. Biochem. 82, 551–575 (2013).
doi: 10.1146/annurev-biochem-070511-103700
Fiedorczuk, K. & Sazanov, L. A. Mammalian mitochondrial complex I structure and disease-causing mutations. Trends Cell Biol. 28, 835–867 (2018).
doi: 10.1016/j.tcb.2018.06.006
Urra, F. A., Munoz, F., Lovy, A. & Cardenas, C. The mitochondrial complex(I)ty of cancer. Front. Oncol. 7, 118 (2017).
doi: 10.3389/fonc.2017.00118 pubmed: 5462917 pmcid: 5462917
Stefanatos, R. & Sanz, A. Mitochondrial complex I: a central regulator of the aging process. Cell Cycle 10, 1528–1532 (2011).
doi: 10.4161/cc.10.10.15496
Zhu, J., Vinothkumar, K. R. & Hirst, J. Structure of mammalian respiratory complex I. Nature 536, 354–358 (2016).
doi: 10.1038/nature19095 pubmed: 5027920 pmcid: 5027920
Fiedorczuk, K. et al. Atomic structure of the entire mammalian mitochondrial complex I. Nature 538, 406–410 (2016).
doi: 10.1038/nature19794 pubmed: 5164932 pmcid: 5164932
Stroud, D. A. et al. Accessory subunits are integral for assembly and function of human mitochondrial complex I. Nature 538, 123–126 (2016).
doi: 10.1038/nature19754
Guerrero-Castillo, S. et al. The assembly pathway of mitochondrial respiratory chain complex I. Cell Metab. 25, 128–139 (2017).
doi: 10.1016/j.cmet.2016.09.002
Drose, S. & Brandt, U. Molecular mechanisms of superoxide production by the mitochondrial respiratory chain. Adv. Exp. Med. Biol. 748, 145–169 (2012).
doi: 10.1007/978-1-4614-3573-0_6 pubmed: 22729857 pmcid: 22729857
Hirst, J. & Roessler, M. M. Energy conversion, redox catalysis and generation of reactive oxygen species by respiratory complex I. Biochim. et. Biophys. Acta (BBA)-Bioenerg. 1857, 872–883 (2016).
doi: 10.1016/j.bbabio.2015.12.009
Chouchani, E. T. et al. Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I. Nat. Med. 19, 753–759 (2013).
doi: 10.1038/nm.3212 pubmed: 23708290 pmcid: 23708290
Schagger, H. et al. Significance of respirasomes for the assembly/stability of human respiratory chain complex I. J. Biol. Chem. 279, 36349–36353 (2004).
doi: 10.1074/jbc.M404033200 pubmed: 15208329 pmcid: 15208329
Lapuente-Brun, E. et al. Supercomplex assembly determines electron flux in the mitochondrial electron transport chain. Science 340, 1567–1570 (2013).
doi: 10.1126/science.1230381 pubmed: 23812712 pmcid: 23812712
Guaras, A. et al. The CoQH2/CoQ ratio serves as a sensor of respiratory chain efficiency. Cell Rep. 15, 197–209 (2016).
doi: 10.1016/j.celrep.2016.03.009 pubmed: 27052170 pmcid: 27052170
Zurita Rendon, O. & Shoubridge, E. A. Early complex I assembly defects result in rapid turnover of the ND1 subunit. Hum. Mol. Genet. 21, 3815–3824 (2012).
doi: 10.1093/hmg/dds209 pubmed: 22653752 pmcid: 22653752
Hornig-Do, H. T. et al. Nonsense mutations in the COX1 subunit impair the stability of respiratory chain complexes rather than their assembly. EMBO J. 31, 1293–1307 (2012).
doi: 10.1038/emboj.2011.477 pubmed: 22252130 pmcid: 22252130
Szczepanowska, K. et al. CLPP coordinates mitoribosomal assembly through the regulation of ERAL1 levels. EMBO J. 35, 2566–2583 (2016).
doi: 10.15252/embj.201694253 pubmed: 27797820 pmcid: 27797820
Baker, T. A. & Sauer, R. T. ClpXP, an ATP-powered unfolding and protein-degradation machine. Biochim. Biophys. Acta 1823, 15–28 (2012).
doi: 10.1016/j.bbamcr.2011.06.007 pubmed: 21736903 pmcid: 21736903
Maly, T., Zwicker, K., Cernescu, A., Brandt, U. & Prisner, T. F. New pulsed EPR methods and their application to characterize mitochondrial complex I. Biochim. Biophys. Acta 1787, 584–592 (2009).
doi: 10.1016/j.bbabio.2009.02.003 pubmed: 19366602 pmcid: 19366602
Li, Y. et al. An assembled complex IV maintains the stability and activity of complex I in mammalian mitochondria. J. Biol. Chem. 282, 17557–17562 (2007).
doi: 10.1074/jbc.M701056200 pubmed: 17452320 pmcid: 17452320
Seiferling, D. et al. Loss of CLPP alleviates mitochondrial cardiomyopathy without affecting the mammalian UPRmt. EMBO Rep. 17, 953–964 (2016).
Hurd, T. R. et al. Complex I within oxidatively stressed bovine heart mitochondria is glutathionylated on Cys-531 and Cys-704 of the 75-kDa subunit: potential role of CYS residues in decreasing oxidative damage. J. Biol. Chem. 283, 24801–24815 (2008).
doi: 10.1074/jbc.M803432200 pubmed: 18611857 pmcid: 18611857
Stepanova, A. et al. Redox-dependent loss of flavin by mitochondrial complex I in brain ischemia/reperfusion injury. Antioxid. Redox Signal. 31, 608–622 (2019).
doi: 10.1089/ars.2018.7693 pubmed: 31037949 pmcid: 31037949
Robb, E. L. et al. Selective superoxide generation within mitochondria by the targeted redox cycler MitoParaquat. Free Radic. Biol. Med. 89, 883–894 (2015).
doi: 10.1016/j.freeradbiomed.2015.08.021 pubmed: 26454075 pmcid: 26454075
Murphy, M. P. How mitochondria produce reactive oxygen species. Biochem. J. 417, 1–13 (2009).
doi: 10.1042/BJ20081386 pubmed: 19061483 pmcid: 19061483
Vinogradov, A. D. & Grivennikova, V. G. Oxidation of NADH and ROS production by respiratory complex I. Biochim. Biophys. Acta 1857, 863–871 (2016).
doi: 10.1016/j.bbabio.2015.11.004 pubmed: 26571336 pmcid: 26571336
Trifunovic, A. et al. Somatic mtDNA mutations cause aging phenotypes without affecting reactive oxygen species production. Proc. Natl Acad. Sci. USA 102, 17993–17998 (2005).
doi: 10.1073/pnas.0508886102 pubmed: 16332961 pmcid: 16332961
Edgar, D. et al. Random point mutations with major effects on protein-coding genes are the driving force behind premature aging in mtDNA mutator mice. Cell Metab. 10, 131–138 (2009).
doi: 10.1016/j.cmet.2009.06.010 pubmed: 19656491 pmcid: 19656491
Acin-Perez, R. et al. Respiratory complex III is required to maintain complex I in mammalian mitochondria. Mol. Cell 13, 805–815 (2004).
doi: 10.1016/S1097-2765(04)00124-8 pubmed: 3164363 pmcid: 3164363
Diaz, F., Fukui, H., Garcia, S. & Moraes, C. T. Cytochrome c oxidase is required for the assembly/stability of respiratory complex I in mouse fibroblasts. Mol. Cell Biol. 26, 4872–4881 (2006).
doi: 10.1128/MCB.01767-05 pubmed: 1489173 pmcid: 1489173
Kayser, E. B., Morgan, P. G., Hoppel, C. L. & Sedensky, M. M. Mitochondrial expression and function of GAS-1 in Caenorhabditis elegans. J. Biol. Chem. 276, 20551–20558 (2001).
doi: 10.1074/jbc.M011066200
Dogan, S. A. et al. Tissue-specific loss of DARS2 activates stress responses independently of respiratory chain deficiency in the heart. Cell Metab. 19, 458–469 (2014).
doi: 10.1016/j.cmet.2014.02.004
Camara, Y. et al. MTERF4 regulates translation by targeting the methyltransferase NSUN4 to the mammalian mitochondrial ribosome. Cell Metab. 13, 527–539 (2011).
doi: 10.1016/j.cmet.2011.04.002
Metodiev, M. D. et al. Methylation of 12S rRNA is necessary for in vivo stability of the small subunit of the mammalian mitochondrial ribosome. Cell Metab. 9, 386–397 (2009).
doi: 10.1016/j.cmet.2009.03.001 pubmed: 19356719 pmcid: 19356719
Agip A. A., Blaza J. N., Fedor J. G., & Hirst J. Mammalian respiratory complex I through the lens of cryo-EM. Annu. Rev. Biophys. 48, 165–184 (2019).
Kmita, K. et al. Accessory NUMM (NDUFS6) subunit harbors a Zn-binding site and is essential for biogenesis of mitochondrial complex I. Proc. Natl Acad. Sci. USA 112, 5685–5690 (2015).
doi: 10.1073/pnas.1424353112
Stepanova, A. et al. Redox-dependent loss of flavin by mitochondrial complex I in brain ischemia/reperfusion injury. Antioxid. Redox Signal. 31, 608–622 (2019).
Chen, J. et al. Peptide-based antibodies against glutathione-binding domains suppress superoxide production mediated by mitochondrial complex I. J. Biol. Chem. 285, 3168–3180 (2010).
doi: 10.1074/jbc.M109.056846 pubmed: 19940158 pmcid: 19940158
Chen, Y. R., Chen, C. L., Zhang, L., Green-Church, K. B. & Zweier, J. L. Superoxide generation from mitochondrial NADH dehydrogenase induces self-inactivation with specific protein radical formation. J. Biol. Chem. 280, 37339–37348 (2005).
doi: 10.1074/jbc.M503936200 pubmed: 16150735 pmcid: 16150735
Silva, P. et al. FtsH is involved in the early stages of repair of photosystem II in Synechocystis sp PCC 6803. Plant Cell 15, 2152–2164 (2003).
doi: 10.1105/tpc.012609 pubmed: 12953117 pmcid: 12953117
Kato, Y., Miura, E., Ido, K., Ifuku, K. & Sakamoto, W. The variegated mutants lacking chloroplastic FtsHs are defective in D1 degradation and accumulate reactive oxygen species. Plant Physiol. 151, 1790–1801 (2009).
doi: 10.1104/pp.109.146589 pubmed: 2785964 pmcid: 2785964
Nixon, P. J., Michoux, F., Yu, J., Boehm, M. & Komenda, J. Recent advances in understanding the assembly and repair of photosystem II. Ann. Bot. 106, 1–16 (2010).
doi: 10.1093/aob/mcq059 pubmed: 2889791 pmcid: 2889791
Arlt, H. et al. The formation of respiratory chain complexes in mitochondria is under the proteolytic control of the m-AAA protease. EMBO J. 17, 4837–4847 (1998).
doi: 10.1093/emboj/17.16.4837 pubmed: 1170813 pmcid: 1170813
Stiburek, L. et al. YME1L controls the accumulation of respiratory chain subunits and is required for apoptotic resistance, cristae morphogenesis, and cell proliferation. Mol. Biol. Cell 23, 1010–1023 (2012).
doi: 10.1091/mbc.e11-08-0674 pubmed: 3302729 pmcid: 3302729
Kamath, R. S., Martinez-Campos, M., Zipperlen, P., Fraser, A. G. & Ahringer, J. Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol. 2, RESEARCH0002 (2001).
doi: 10.1186/gb-2001-2-2-reports0002
Tyanova, S., Mann, M. & Cox, J. MaxQuant for in-depth analysis of large SILAC datasets. Methods Mol. Biol. 1188, 351–364 (2014).
doi: 10.1007/978-1-4939-1142-4_24
Madian, A. G. & Regnier, F. E. Proteomic identification of carbonylated proteins and their oxidation sites. J. Proteome Res. 9, 3766–3780 (2010).
doi: 10.1021/pr1002609 pubmed: 3214645 pmcid: 3214645
Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2, 1896–1906 (2007).
doi: 10.1038/nprot.2007.261
Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).
doi: 10.1038/nbt.1511 pubmed: 19029910 pmcid: 19029910
Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740 (2016).
doi: 10.1038/nmeth.3901 pubmed: 27348712 pmcid: 27348712
Fricker, M. D. Quantitative Redox Imaging Software. Antioxid. Redox Signal. 24, 752–762 (2016).
doi: 10.1089/ars.2015.6390 pubmed: 26154420 pmcid: 26154420
Faeder, E. J., Davis, P. S. & Siegel, L. M. Reduced nicotinamide adenine dinucleotide phosphate-sulfite reductase of enterobacteria. V. Studies with the Escherichia coli hemoflavoprotein depleted of flavin mononucleotide: distinct roles for the flavin adenine dinucleotide and flavin mononucleotide prosthetic groups in catalysis. J. Biol. Chem. 249, 1599–1609 (1974).
pubmed: 4150392 pmcid: 4150392

Auteurs

Karolina Szczepanowska (K)

Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine (CMMC), University of Cologne, 50931, Cologne, Germany. karolina.szczepanowska@uk-koeln.de.
Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, 50931, Cologne, Germany. karolina.szczepanowska@uk-koeln.de.

Katharina Senft (K)

Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine (CMMC), University of Cologne, 50931, Cologne, Germany.
Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, 50931, Cologne, Germany.

Juliana Heidler (J)

Functional Proteomics, ZBC, Faculty of Medicine, Goethe University, 60590, Frankfurt am Main, Germany.

Marija Herholz (M)

Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine (CMMC), University of Cologne, 50931, Cologne, Germany.
Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, 50931, Cologne, Germany.

Alexandra Kukat (A)

Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine (CMMC), University of Cologne, 50931, Cologne, Germany.
Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, 50931, Cologne, Germany.

Michaela Nicole Höhne (MN)

Department of Chemistry, Institute of Biochemistry, University of Cologne, 50674, Cologne, Germany.

Eduard Hofsetz (E)

Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine (CMMC), University of Cologne, 50931, Cologne, Germany.
Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, 50931, Cologne, Germany.

Christina Becker (C)

Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine (CMMC), University of Cologne, 50931, Cologne, Germany.
Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, 50931, Cologne, Germany.

Sophie Kaspar (S)

Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine (CMMC), University of Cologne, 50931, Cologne, Germany.
Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, 50931, Cologne, Germany.

Heiko Giese (H)

Molecular Bioinformatics, Goethe-Universität Frankfurt am Main, 60325, Frankfurt am Main, Germany.

Klaus Zwicker (K)

Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590, Frankfurt am Main, Germany.

Sergio Guerrero-Castillo (S)

Nijmegen Centre for Mitochondrial Disorders, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands.
Cluster of Excellence Frankfurt "Macromolecular Complexes", Goethe-University, 60590, Frankfurt am Main, Germany.

Linda Baumann (L)

Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine (CMMC), University of Cologne, 50931, Cologne, Germany.
Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, 50931, Cologne, Germany.

Johanna Kauppila (J)

Department of Mitochondrial Biology, Max Planck Institute for Biology of Aging, 50931, Cologne, Germany.

Anastasia Rumyantseva (A)

Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine (CMMC), University of Cologne, 50931, Cologne, Germany.
Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, 50931, Cologne, Germany.

Stefan Müller (S)

Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine (CMMC), University of Cologne, 50931, Cologne, Germany.

Christian K Frese (CK)

Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine (CMMC), University of Cologne, 50931, Cologne, Germany.

Ulrich Brandt (U)

Nijmegen Centre for Mitochondrial Disorders, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands.
Cluster of Excellence Frankfurt "Macromolecular Complexes", Goethe-University, 60590, Frankfurt am Main, Germany.

Jan Riemer (J)

Department of Chemistry, Institute of Biochemistry, University of Cologne, 50674, Cologne, Germany.

Ilka Wittig (I)

Functional Proteomics, ZBC, Faculty of Medicine, Goethe University, 60590, Frankfurt am Main, Germany.

Aleksandra Trifunovic (A)

Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine (CMMC), University of Cologne, 50931, Cologne, Germany. aleksandra.trifunovic@uk-koeln.de.
Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, 50931, Cologne, Germany. aleksandra.trifunovic@uk-koeln.de.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH