MONOPOL - A traveling-wave magnetic neutron spin resonator for tailoring polarized neutron beams.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
02 Apr 2020
Historique:
received: 07 10 2019
accepted: 14 03 2020
entrez: 4 4 2020
pubmed: 4 4 2020
medline: 4 4 2020
Statut: epublish

Résumé

We report on first experimental tests of a neutron magnetic spin resonator at a very cold neutron beam port of the high flux reactor at the ILL Grenoble. When placed between two supermirror neutron polarizers and operated in a pulsed traveling-wave mode it allows to decouple its time- and wavelength-resolution and can therefore be used simultaneously as electronically tunable monochromator and fast beam chopper. As a first 'real' scientific application we intend its implementation in the PERC (p roton and e lectron r adiation c hannel) project related to high-precision experiments in neutron beta decay.

Identifiants

pubmed: 32242088
doi: 10.1038/s41598-020-62612-9
pii: 10.1038/s41598-020-62612-9
pmc: PMC7118124
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

5815

Références

Brown, M. A. et al. (UCNA Collaboration). New result for the neutron β -asymmetry parameter A
doi: 10.1103/PhysRevC.97.035505
Märkisch, B. et al. Measurement of the Weak Axial-Vector Coupling Constant in the Decay of Free Neutrons Using a Pulsed Cold Neutron Beam. Physical Review Letters 122, 242501 (2019).
doi: 10.1103/PhysRevLett.122.242501
Beck, M.  et al.  Improved determination of the [Formula: see text] angular correlation coefficient a in free neutron decay with the a SPECT spectrometer, https://arxiv.org/abs/1908.04785 [nucl-ex] (2019).
Czarnecki, A., Marciano, W. J. & Sirlin, A.  Radiative corrections to neutron and nuclear beta decays revisited, https://arxiv.org/abs/1907.06737 [hep-ph] (2019).
Hayen, L. & Severijns, N.  Radiative corrections to Gamow-Teller decays, https://arxiv.org/abs/1906.09870 [nucl-th] (2019).
Ivanov, A. N., Höllweiser, R., Troitskaya, N. I., Wellenzohn, M. & Berdnikov, Y. A. Radiative corrections of order O(αe
doi: 10.1103/PhysRevD.99.093006
Chien-YeahSeng, M. J. R.-M. & Gorchtein, M. Dispersive evaluation of the inner radiative correction in neutron and nuclear β decay. Physical Review D 100, 013001 (2019).
doi: 10.1103/PhysRevD.100.013001
Tan, W.  Laboratory tests of the normal-mirror particle oscillations and the extended CKM matrix, https://arxiv.org/abs/1906.10262 [hep-ph] (2019)
González-Alonso, M., Naviliat-Cuncic, O. & Severijns, N. New physics searches in nuclear and neutron β decay. Progress in Particle and Nuclear Physics 104, 165–223 (2019).
doi: 10.1016/j.ppnp.2018.08.002
Cirgiliano, V.  et al.  Precision beta decay as a probe of new physics, https://arxiv.org/abs/1907.02164 [nucl-ex] (2019).
Ivanov, A. N., Höllweiser, R., Troitskaya, N. I., Wellenzohn, M. & Berdnikov, Y. A. Tests of the standard model in neutron beta decay with polarized electrons and unpolarized neutrons and protons. Physical Review D 99, 053004 (2019).
doi: 10.1103/PhysRevD.99.053004
Palladino, A. The flavor composition of astrophysical neutrinos after 8 years of IceCube: an indication of neutron decay scenario? European Physical Journal C 79, 500 (2019).
doi: 10.1140/epjc/s10052-019-7018-7
Serebrov, A. P. Disagreement between measurements of the neutron lifetime by the ultracold neutron storage method and the beam technique. Physics-Uspekhi 62, 596–601 (2019).
doi: 10.3367/UFNe.2018.11.038475
Fornal, B. & Grinstein, B. Dark Matter Interpretation of the Neutron Decay Anomaly. Physical Review Letters 120, 191801 (2018).
doi: 10.1103/PhysRevLett.120.191801
Klopf, M. et al. Constraints on the Dark Matter Interpretation n → χ + e
doi: 10.1103/PhysRevLett.122.222503
Dubbers, D., Saul, H., Märkisch, B., Soldner, T. & Abele, H. Exotic decay channels are not the cause of the neutron lifetime anomaly. Physics Letters B 791, 6–10 (2019).
doi: 10.1016/j.physletb.2019.02.013
Ivanov, A. N., Höllweiser, R., Troitskaya, N. I., Wellenzohn, M. & Berdnikov, Y. A. Neutron dark matter decays and correlation coefficients of neutron β
doi: 10.1016/j.nuclphysb.2018.11.005
Fornal, B. & Grinstein, B. Dark particle interpretation of the neutron decay anomaly. Journal of Physics: Conference Series 1308, 012010 (2019).
Vergados, J. D. Searching for light wimps in view of neutron decay to dark matter. Journal of Physics G: Nuclear and Particle Physics 46, 105002 (2019).
doi: 10.1088/1361-6471/ab326d
Kosheleva, O. & Kreinovich, V.  Neutron Lifetime Puzzle and Nuclear Stability: A Possible Relation. Departmental Technical Reports (CS) 1338, University of Texas at El Paso, https://digitalcommons.utep.edu/cs_techrep/1338 (2019).
Grinstein, B., Kouvaris, C. & Nielsen, N. G. Neutron Star Stability in Light of the Neutron Decay Anomaly. Physical Review Letters 123, 091601 (2019).
doi: 10.1103/PhysRevLett.123.091601
Nesvizhevsky, V. V., Gudkov, V., Protasov, K. V., Snow, W. M. & Voronin, A. Y. A new operating mode in experiments searching for free neutron-antineutron oscillations based on coherent neutron and antineutron mirror reflections. EPJ Web of Conferences 191, 01005 (2018).
doi: 10.1051/epjconf/201819101005
Ejiri, H. & Vergados, J. D. Neutron disappearance inside the nucleus. Journal of Physics G: Nuclear and Particle Physics 46, 025104 (2019).
Leontaris, G. K. & Vergados, J. D. [Formula: see text] oscillations and the neutron lifetime. Physical Review D 99, 015010 (2019).
doi: 10.1103/PhysRevD.99.015010
Giacosa, F. & Pagliara, G.  Neutron decay anomaly and inverse quantum zeno effect, (2019).
Giacosa, F.  Modelling the inverse zeno effect for the neutron decay, https://arxiv.org/abs/1909.01099 [hep-ph] (2019)
Wang, X.  et al.  Design of the Magnetic System of the Neutron Decay Facility PERC. EPJ Web of Conferences (2019).
Drabkin, G. M. Analysis of Energy Spectrum of Polarized Neutrons with the Aid of a Magnetic Field. Soviet Physics JETP 16, 781–782 (1963).
Drabkin, G. M., Trunov, V. A. & Runov, V. B. Static Magnetic Field Analysis of a Polarized Neutron Spectrum. Soviet Physics JETP 27, 194–196 (1968).
Agamalian, M. M., Schweizer, J., Otchik, Y. M. & Khavronin, V. P. Optimization of the Drabkin monochromator. Nuclear Instruments and Methods 158, 395–397 (1979).
doi: 10.1016/S0029-554X(79)93910-7
Majkrzak, C. F. & Shirane, G. Polarized Neutron Spectrometer Development and Experiments at Brookhaven. Journal de Physique Colloques 43, 215–220 (1982).
Parizzi, A. A., Lee, W.-T. & Klose, F. Modeling the neutron spin-flip process in a time-of-flight spin-resonance energy filter. Applied Physics A 74, S1498–S1501 (2002).
doi: 10.1007/s003390201793
Agamalyan, M. M., Drabkin, G. M. & Sbitnev, V. I. Spatial spin resonance of polarized neutrons. A tunable slow neutron filter. Physics Reports 168, 265–303 (1988).
doi: 10.1016/0370-1573(88)90081-6
Badurek, G., Kollmar, A., Seeger, A. & Schalt, W. Use of a Drabkin spin resonator in inverted geometry neutron time-of-flight spectroscopy. Nuclear Instruments and Methods A 309, 275–283 (1991).
doi: 10.1016/0168-9002(91)90112-4
Alefeld, B., Kollmar, A., Badurek, G. & Drabkin, G. M. Space-time focusing of polarized neutrons. Nuclear Instruments and Methods A 306, 300–304 (1991).
doi: 10.1016/0168-9002(91)90336-O
Yamazaki, D., Soyama, K., Ebisawa, T., Aizawa, K. & Tasaki, S. Pulse shaping by means of spatial neutron spin resonance. Nuclear Instruments and Methods A 529, 204–208 (2004).
doi: 10.1016/j.nima.2004.04.158
Yamazaki, D. et al. Chopper mode of Drabkin energy filters for pulsed neutron sources. Physica B 356, 174–177 (2005).
doi: 10.1016/j.physb.2004.10.071
Badurek, G. & Jericha, E. Upon the versatility of spatial neutron magnetic spin resonance. Physica B 335, 215–218 (2003).
doi: 10.1016/S0921-4526(03)00240-0
Badurek, G., Gösselsberger, C. & Jericha, E. Design of a pulsed spatial neutron magnetic spin resonator. Physica B 406, 2458–2462 (2011).
doi: 10.1016/j.physb.2010.09.023
Gösselsberger, C. et al. Design of a novel pulsed spin resonator for the beta-decay experiment PERC. Physics Procedia 17, 62–68 (2011).
doi: 10.1016/j.phpro.2011.06.018
Gösselsberger, C. et al. Neutron beam tailoring by means of a novel pulsed spatial magnetic spin resonator. Journal of Physics: Conference Series 340, 012028 (2012).
Gösselsberger, C. et al. Wavelength-selected neutron pulses formed by a spatial magnetic neutron spin resonator. Physics Procedia 42, 106–115 (2013).
doi: 10.1016/j.phpro.2013.03.182
Rabi, I. I. Space quantization in a gyrating magnetic field. Phys. Rev. 51, 652–654 (1937).
doi: 10.1103/PhysRev.51.652
Alvarez, L. W. & Bloch, F. A quantitative determination of the neutron moment in absolute nuclear magnetons. Phys. Rev. 57, 111–122 (1940).
doi: 10.1103/PhysRev.57.111
Bloch, F. & Siegert, A. Magnetic resonance for nonrotating fields. Phys. Rev. 57, 522–527 (1940).
doi: 10.1103/PhysRev.57.522
Jericha, E. et al. Neutron detection in the frame of spatial magnetic spin resonance. Nuclear Instruments and Methods in Physics Research A 845, 552–555 (2017).
doi: 10.1016/j.nima.2016.04.103
Dubbers, D. et al. A clean, bright, and versatile source of neutron decay products. Nuclear Instruments and Methods in Physics Research A 596, 238–247 (2008).
doi: 10.1016/j.nima.2008.07.157
Konrad, G. et al. Neutron Decay with PERC: a Progress Report. Journal of Physics: Conference Series 340, 012048 (2012).
Mund, D. et al. Determination of the Weak Axial Vector Coupling λ = g
doi: 10.1103/PhysRevLett.110.172502
Dubbers, D. Teilchenphysik mit langsamen Neutronen. Physikalische Blätter 45, 133–138 (1989).
doi: 10.1002/phbl.19890450502
Severijns, N., Beck, M. & Naviliat-Čunčić, O. Tests of the standard electroweak model in nuclear beta decay. Review of Modern Physics 78, 991–1040 (2006).
doi: 10.1103/RevModPhys.78.991
Abele, H. The neutron. Its properties and basic interactions. Progress in Particle and Nuclear Physics 60, 1–81 (2008).
doi: 10.1016/j.ppnp.2007.05.002
Dubbers, D. & Schmidt, M. G. The neutron and its role in cosmology and particle physics. Review of Modern Physics 83, 1111–1171 (2011).
doi: 10.1103/RevModPhys.83.1111
Ramsey-Musolf, M. J. Electric Dipole Moments and the Mass Scale of New t -Violating, p -Conserving Interactions. Physical Review Letters 83, 3997–4000 (1999).
doi: 10.1103/PhysRevLett.83.3997
Ivanov, A. N., Pitschmann, M. & Troitskaya, N. I. Neutron β
doi: 10.1103/PhysRevD.88.073002
Petukhov, A. K. et al. A concept of advanced broad-band solid-state supermirror polarizers for cold neutrons. Nuclear Instruments and Methods in Physics Research A 838, 33–38 (2016).
doi: 10.1016/j.nima.2016.09.023
Wang, X., Konrad, G. & Abele, H. R × B drift momentum spectrometer with high resolution and large phase space acceptance. Nuclear Instruments and Methods in Physics Research A 701, 254–261 (2013).
doi: 10.1016/j.nima.2012.10.071
Konrad, G.  NoMoS: Beyond the Standard Model Physics in Neutron Decay. PoS (EPS-HEP2015), 592 (2015).

Auteurs

Erwin Jericha (E)

TU Wien, Atominstitut, Wien, 1020, Austria. erwin.jericha@tuwien.ac.at.

Christoph Gösselsberger (C)

TU Wien, Atominstitut, Wien, 1020, Austria.

Hartmut Abele (H)

TU Wien, Atominstitut, Wien, 1020, Austria.

Stefan Baumgartner (S)

TU Wien, Atominstitut, Wien, 1020, Austria.

Bernhard Maximilian Berger (BM)

TU Wien, Atominstitut, Wien, 1020, Austria.

Peter Geltenbort (P)

Institut Laue-Langevin, Grenoble, 38042, France.

Masahiro Hino (M)

Kyoto University, Institute for Integrated Radiation and Nuclear Science, Kumatori, Osaka, 590-0494, Japan.

Tatsuro Oda (T)

Kyoto University, Institute for Integrated Radiation and Nuclear Science, Kumatori, Osaka, 590-0494, Japan.

Robert Raab (R)

TU Wien, Atominstitut, Wien, 1020, Austria.

Gerald Badurek (G)

TU Wien, Atominstitut, Wien, 1020, Austria.

Classifications MeSH