Ovalbumin-Derived Peptides Activate Retinoic Acid Signalling Pathways and Induce Regulatory Responses Through Toll-Like Receptor Interactions.
Aldehyde Dehydrogenase 1 Family
/ genetics
Animals
Biomarkers
Cells, Cultured
Coculture Techniques
Dendritic Cells
/ immunology
Female
Humans
Hydrolysis
Immunophenotyping
Mice
NF-kappa B
/ metabolism
Ovalbumin
/ chemistry
Peptide Fragments
/ chemistry
Protein Binding
Retinal Dehydrogenase
/ genetics
Signal Transduction
/ drug effects
T-Lymphocytes
/ immunology
Toll-Like Receptors
/ metabolism
Tretinoin
/ metabolism
dendritic cells
peptide immunotherapy
regulatory T cells
retinoic acid
toll like receptors
Journal
Nutrients
ISSN: 2072-6643
Titre abrégé: Nutrients
Pays: Switzerland
ID NLM: 101521595
Informations de publication
Date de publication:
20 Mar 2020
20 Mar 2020
Historique:
received:
13
02
2020
revised:
03
03
2020
accepted:
17
03
2020
entrez:
5
4
2020
pubmed:
5
4
2020
medline:
23
12
2020
Statut:
epublish
Résumé
This study investigates the potential of a hydrolysate of ovalbumin with pepsin (OP) to preclude Th2-type immunity by the enhancement of tolerogenic dendritic cells (DCs) and regulatory T (Treg) cells. Through Toll-like receptor (TLR) stimulation, OP enhances the retinoic acid pathway on DCs by means of the induction of aldehyde dehydrogenase enzymes and transforming growth factor beta (TGF-β), and it confers upon DC the ability to upregulate interleukin 10 (IL-10) as well as other tolerance-promoting mediators downstream of TRL signalling, such as IL-27, IL-33, Notch ligands, OX40L, and the transcription factors IRF4 and IRF8. OP-conditioned DCs induce the expansion of Foxp3+ and Tr1 cells in co-culture with CD4+ T cells. Furthermore, OP directly conditions CD4+ T cells from naïve mice, without the mediation of DCs, to express aldehyde dehydrogenase (ALDH) enzymes and, in the presence of the Th2 cytokine IL-4 and exogenous TGF-β, it enhances Foxp3 expression. It is noteworthy that, on CD4+ T cells isolated from egg-allergic mice, OP significantly enriches the levels of Foxp3+ and Foxp3+ RORγt+ CD4+ T cells. In conclusion, we show that food peptides may work, analogously to microbial-driven signals, through TLRs, to promote a tolerogenic phenotype on cells of the innate and adaptive immune system, a property that is further enhanced in the context of a Th2 cytokine-rich environment.
Identifiants
pubmed: 32245005
pii: nu12030831
doi: 10.3390/nu12030831
pmc: PMC7146383
pii:
doi:
Substances chimiques
Biomarkers
0
NF-kappa B
0
Peptide Fragments
0
Toll-Like Receptors
0
Tretinoin
5688UTC01R
Ovalbumin
9006-59-1
Aldehyde Dehydrogenase 1 Family
EC 1.2.1
ALDH1A2 protein, human
EC 1.2.1.36
Retinal Dehydrogenase
EC 1.2.1.36
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Ministerio de Ciencia, Innovación y Universidades
ID : AGL2017-88964-R
Organisme : Ministerio de Educación, Cultura y Deporte
ID : FPU16/01974 to L.P-R
Références
Mucosal Immunol. 2013 Sep;6(5):921-30
pubmed: 23299617
J Immunol. 2013 Jun 1;190(11):5516-25
pubmed: 23630352
J Immunol. 2006 Dec 1;177(11):7579-87
pubmed: 17114427
Nat Immunol. 2008 Dec;9(12):1347-55
pubmed: 18997793
J Clin Invest. 2006 Jul;116(7):2022-32
pubmed: 16767222
Nat Immunol. 2016 May;17(5):545-55
pubmed: 27019226
J Leukoc Biol. 2010 Jun;87(6):1011-8
pubmed: 20335310
J Exp Med. 2003 Feb 17;197(4):403-11
pubmed: 12591899
J Biol Chem. 2008 May 30;283(22):14955-62
pubmed: 18400747
J Exp Med. 2009 Feb 16;206(2):343-57
pubmed: 19204112
J Immunol. 2011 Jul 1;187(1):141-50
pubmed: 21646294
Science. 2015 Aug 28;349(6251):989-93
pubmed: 26160380
Trends Immunol. 2015 Dec;36(12):802-814
pubmed: 26617322
Food Res Int. 2016 Nov;89(Pt 1):661-669
pubmed: 28460964
Immunity. 2009 Apr 17;30(4):471-2; author reply 472-3
pubmed: 19371709
Nat Immunol. 2008 Jul;9(7):769-76
pubmed: 18516037
J Immunol. 2011 Jun 1;186(11):6287-95
pubmed: 21525388
Nat Med. 2009 Apr;15(4):401-9
pubmed: 19252500
J Allergy Clin Immunol. 2013 Dec;132(6):1409-19
pubmed: 24139608
J Clin Invest. 2005 Jul;115(7):1923-33
pubmed: 15937545
Science. 2006 Nov 17;314(5802):1157-60
pubmed: 17110582
J Immunol. 2005 Dec 15;175(12):8051-9
pubmed: 16339542
J Allergy Clin Immunol. 2017 May;139(5):1608-1620.e3
pubmed: 28277274
J Exp Med. 2008 Jun 9;205(6):1381-93
pubmed: 18504307
J Exp Med. 2007 Aug 6;204(8):1775-85
pubmed: 17620362
Mol Aspects Med. 2012 Feb;33(1):63-76
pubmed: 22120429
Proc Natl Acad Sci U S A. 2010 Jul 6;107(27):12204-9
pubmed: 20566854
Cell Rep. 2016 Jun 21;15(12):2809-24
pubmed: 27332875
J Immunol. 2008 May 15;180(10):6501-7
pubmed: 18453568
Immunol Res. 2009;45(1):25-36
pubmed: 19597998
Int Immunol. 2009 Apr;21(4):361-77
pubmed: 19190084
Immunity. 2016 Apr 19;44(4):860-74
pubmed: 27067057
Oncoimmunology. 2015 Mar 20;4(3):e974393
pubmed: 25949893
PLoS One. 2017 Jun 8;12(6):e0178191
pubmed: 28594834
J Immunol. 2010 Nov 15;185(10):5915-25
pubmed: 20944006
Methods. 2001 Dec;25(4):402-8
pubmed: 11846609
J Immunol. 2013 Sep 15;191(6):3139-51
pubmed: 23960232
Clin Exp Allergy. 2017 Oct;47(10):1342-1354
pubmed: 28763132
J Immunol. 2007 Sep 15;179(6):3504-14
pubmed: 17785784
Immunology. 2009 Apr;126(4):475-84
pubmed: 18778283
J Immunol. 2008 Apr 1;180(7):4441-50
pubmed: 18354165
Biochim Biophys Acta. 2015 Feb;1852(2):365-78
pubmed: 24807060
Immunity. 2015 Aug 18;43(2):289-303
pubmed: 26231118
Nat Commun. 2013;4:2990
pubmed: 24356538
J Exp Med. 2007 Aug 6;204(8):1757-64
pubmed: 17620361
Immunity. 2008 Nov 14;29(5):758-70
pubmed: 19006694
Nat Immunol. 2007 Dec;8(12):1380-9
pubmed: 17994022
Gastroenterology. 2011 Jul;141(1):176-85
pubmed: 21596042
J Innate Immun. 2017;9(6):609-620
pubmed: 28889122
Cytokine. 2016 Sep;85:120-2
pubmed: 27322964
Science. 2015 Aug 28;349(6251):993-7
pubmed: 26272906
J Immunol. 2012 Jan 15;188(2):864-73
pubmed: 22156348
J Immunol. 2000 Jun 1;164(11):5998-6004
pubmed: 10820283
Nature. 2014 Sep 25;513(7519):564-568
pubmed: 25043027
Cell. 2004 May 14;117(4):515-26
pubmed: 15137944
PLoS One. 2014 Oct 01;9(10):e108402
pubmed: 25271635
Eur J Immunol. 2013 Apr;43(4):882-5
pubmed: 23504674