Cross organelle stress response disruption promotes gentamicin-induced proteotoxicity.


Journal

Cell death & disease
ISSN: 2041-4889
Titre abrégé: Cell Death Dis
Pays: England
ID NLM: 101524092

Informations de publication

Date de publication:
03 04 2020
Historique:
received: 09 06 2019
accepted: 09 01 2020
revised: 19 12 2019
entrez: 5 4 2020
pubmed: 5 4 2020
medline: 10 4 2021
Statut: epublish

Résumé

Gentamicin is a nephrotoxic antibiotic that causes acute kidney injury (AKI) primarily by targeting the proximal tubule epithelial cell. The development of an effective therapy for gentamicin-induced renal cell injury is limited by incomplete mechanistic insight. To address this challenge, we propose that RNAi signal pathway screening could identify a unifying mechanism of gentamicin-induced cell injury and suggest a therapeutic strategy to ameliorate it. Computational analysis of RNAi signal screens in gentamicin-exposed human proximal tubule cells suggested the cross-organelle stress response (CORE), the unfolded protein response (UPR), and cell chaperones as key targets of gentamicin-induced injury. To test this hypothesis, we assessed the effect of gentamicin on the CORE, UPR, and cell chaperone function, and tested the therapeutic efficacy of enhancing cell chaperone content. Early gentamicin exposure disrupted the CORE, evidenced by a rise in the ATP:ADP ratio, mitochondrial-specific H

Identifiants

pubmed: 32245975
doi: 10.1038/s41419-020-2382-7
pii: 10.1038/s41419-020-2382-7
pmc: PMC7125232
doi:

Substances chimiques

Anti-Bacterial Agents 0
Gentamicins 0

Types de publication

Journal Article Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

217

Subventions

Organisme : NIDDK NIH HHS
ID : F30 DK117612
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA215059
Pays : United States
Organisme : NCATS NIH HHS
ID : UL1 TR001430
Pays : United States

Références

Fowler, V. G. Jr. et al. Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus. N. Engl. J. Med. 355, 653–665 (2006).
pubmed: 16914701 doi: 10.1056/NEJMoa053783
Nagai, J. & Takano, M. Entry of aminoglycosides into renal tubular epithelial cells via endocytosis-dependent and endocytosis-independent pathways. Biochem Pharm. 90, 331–337 (2014).
pubmed: 24881578 doi: 10.1016/j.bcp.2014.05.018
Cardile, V., Graziano, A. C., Avola, R., Piovano, M. & Russo, A. Potential anticancer activity of lichen secondary metabolite physodic acid. Chem. Biol. Interact. 263, 36–45 (2017).
pubmed: 28012710 doi: 10.1016/j.cbi.2016.12.007
Tangy, F., Moukkadem, M., Vindimian, E., Capmau, M. L. & Le Goffic, F. Mechanism of action of gentamicin components. Characteristics of their binding to Escherichia coli ribosomes. Eur. J. Biochem. 147, 381–386 (1985).
pubmed: 3882427 doi: 10.1111/j.1432-1033.1985.tb08761.x
Jaikumkao, K. et al. Amelioration of renal inflammation, endoplasmic reticulum stress and apoptosis underlies the protective effect of low dosage of atorvastatin in gentamicin-induced nephrotoxicity. PLoS ONE 11, e0164528 (2016).
pubmed: 27727327 pmcid: 5058561 doi: 10.1371/journal.pone.0164528
Lopez-Novoa, J. M., Quiros, Y., Vicente, L., Morales, A. I. & Lopez-Hernandez, F. J. New insights into the mechanism of aminoglycoside nephrotoxicity: an integrative point of view. Kidney Int. 79, 33–45 (2011).
pubmed: 20861826 doi: 10.1038/ki.2010.337
Peyrou, M., Hanna, P. E. & Cribb, A. E. Cisplatin, gentamicin, and p-aminophenol induce markers of endoplasmic reticulum stress in the rat kidneys. Toxicol. Sci. 99, 346–353 (2007).
pubmed: 17567590 doi: 10.1093/toxsci/kfm152
Prokhorova, I. et al. Aminoglycoside interactions and impacts on the eukaryotic ribosome. Proc. Natl Acad. Sci. USA 114, E10899–E10908 (2017).
pubmed: 29208708 doi: 10.1073/pnas.1715501114
Brehme, M. & Voisine, C. Model systems of protein-misfolding diseases reveal chaperone modifiers of proteotoxicity. Dis. Model Mech. 9, 823–838 (2016).
pubmed: 27491084 pmcid: 5007983 doi: 10.1242/dmm.024703
Kohanski, M. A., Dwyer, D. J., Wierzbowski, J., Cottarel, G. & Collins, J. J. Mistranslation of membrane proteins and two-component system activation trigger antibiotic-mediated cell death. Cell 135, 679–690 (2008).
pubmed: 19013277 pmcid: 2684502 doi: 10.1016/j.cell.2008.09.038
Oishi, N. et al. XBP1 mitigates aminoglycoside-induced endoplasmic reticulum stress and neuronal cell death. Cell Death Dis. 6, e1763 (2015).
pubmed: 25973683 pmcid: 4669688 doi: 10.1038/cddis.2015.108
Peric, M. et al. Crosstalk between cellular compartments protects against proteotoxicity and extends lifespan. Sci. Rep. 6, 28751 (2016).
pubmed: 27346163 pmcid: 4921836 doi: 10.1038/srep28751
Lee, H. & Yoon, Y. Mitochondrial fission: regulation and ER connection. Mol. Cells 37, 89–94 (2014).
pubmed: 24598992 pmcid: 3935634 doi: 10.14348/molcells.2014.2329
Yu, T., Jhun, B. S. & Yoon, Y. High-glucose stimulation increases reactive oxygen species production through the calcium and mitogen-activated protein kinase-mediated activation of mitochondrial fission. Antioxid. Redox Signal 14, 425–437 (2011).
pubmed: 20518702 pmcid: 3025178 doi: 10.1089/ars.2010.3284
Seervi, M., Joseph, J., Sobhan, P. K., Bhavya, B. C. & Santhoshkumar, T. R. Essential requirement of cytochrome c release for caspase activation by procaspase-activating compound defined by cellular models. Cell Death Dis. 2, e207 (2011).
pubmed: 21900958 pmcid: 3186908 doi: 10.1038/cddis.2011.90
Anderson, G. R. et al. Dysregulation of mitochondrial dynamics proteins are a targetable feature of human tumors. Nat. Commun. 9, 1677 (2018).
pubmed: 29700304 pmcid: 5919970 doi: 10.1038/s41467-018-04033-x
Haroon, S. & Vermulst, M. Linking mitochondrial dynamics to mitochondrial protein quality control. Curr. Opin. Genet Dev. 38, 68–74 (2016).
pubmed: 27235806 doi: 10.1016/j.gde.2016.04.004
Sano, R. & Reed, J. C. ER stress-induced cell death mechanisms. Biochim Biophys. Acta 1833, 3460–3470 (2013).
pubmed: 23850759 doi: 10.1016/j.bbamcr.2013.06.028
Verfaillie, T. et al. PERK is required at the ER-mitochondrial contact sites to convey apoptosis after ROS-based ER stress. Cell Death Differ. 19, 1880–1891 (2012).
pubmed: 22705852 pmcid: 3469056 doi: 10.1038/cdd.2012.74
Yan, M., Shu, S., Guo, C., Tang, C. & Dong, Z. Endoplasmic reticulum stress in ischemic and nephrotoxic acute kidney injury. Ann. Med. 50, 381–390 (2018).
pubmed: 29895209 pmcid: 6333465 doi: 10.1080/07853890.2018.1489142
Wang, Z. et al. Nucleophosmin, a critical Bax cofactor in ischemia-induced cell death. Mol. Cell Biol. 33, 1916–1924 (2013).
pubmed: 23459946 pmcid: 3647959 doi: 10.1128/MCB.00015-13
Pierson-Marchandise, M. et al. The drugs that mostly frequently induce acute kidney injury: a case—non-case study of a pharmacovigilance database. Br. J. Clin. Pharm. https://doi.org/10.1111/bcp.13216 (2016).
doi: 10.1111/bcp.13216
Beane, W. S., Morokuma, J., Adams, D. S. & Levin, M. A chemical genetics approach reveals H,K-ATPase-mediated membrane voltage is required for planarian head regeneration. Chem. Biol. 18, 77–89 (2011).
pubmed: 21276941 pmcid: 3278711 doi: 10.1016/j.chembiol.2010.11.012
Cancer Genome Atlas Research, N. Comprehensive molecular profiling of lung adenocarcinoma. Nature 511, 543–550 (2014).
doi: 10.1038/nature13385
Tantama, M., Martinez-Francois, J. R., Mongeon, R. & Yellen, G. Imaging energy status in live cells with a fluorescent biosensor of the intracellular ATP-to-ADP ratio. Nat. Commun. 4, 2550 (2013).
pubmed: 24096541 pmcid: 3852917 doi: 10.1038/ncomms3550
Belousov, V. V. et al. Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat. Methods 3, 281–286 (2006).
pubmed: 16554833 doi: 10.1038/nmeth866
Dagda, R. K. et al. Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. J. Biol. Chem. 284, 13843–13855 (2009).
pubmed: 19279012 pmcid: 2679485 doi: 10.1074/jbc.M808515200
Dunn, K. W., Kamocka, M. M. & McDonald, J. H. A practical guide to evaluating colocalization in biological microscopy. Am. J. Physiol. Cell Physiol. 300, C723–C742 (2011).
pubmed: 21209361 pmcid: 3074624 doi: 10.1152/ajpcell.00462.2010
Corbeski, I. et al. Microscale thermophoresis analysis of chromatin interactions. Methods Mol. Biol. 1837, 177–197 (2018).
pubmed: 30109612 doi: 10.1007/978-1-4939-8675-0_11
Lazarev, V. F. et al. Sensitizing tumor cells to conventional drugs: HSP70 chaperone inhibitors, their selection and application in cancer models. Cell Death Dis. 9, 41 (2018).
pubmed: 29348557 pmcid: 5833849 doi: 10.1038/s41419-017-0160-y
Berlett, B. S. & Stadtman, E. R. Protein oxidation in aging, disease, and oxidative stress. J. Biol. Chem. 272, 20313–20316 (1997).
pubmed: 9252331 doi: 10.1074/jbc.272.33.20313
Huiting, L. N. et al. UFD1 contributes to MYC-mediated leukemia aggressiveness through suppression of the proapoptotic unfolded protein response. Leukemia 32, 2339–2351 (2018).
pubmed: 29743725 pmcid: 6202254 doi: 10.1038/s41375-018-0141-x
Beriault, D. R. & Werstuck, G. H. Detection and quantification of endoplasmic reticulum stress in living cells using the fluorescent compound, Thioflavin T. Biochim Biophys. Acta 1833, 2293–2301 (2013).
pubmed: 23747341 doi: 10.1016/j.bbamcr.2013.05.020
Shashar, M. et al. Targeting STUB1-tissue factor axis normalizes hyperthrombotic uremic phenotype without increasing bleeding risk. Sci. Transl. Med. 9, https://doi.org/10.1126/scitranslmed.aam8475 (2017).
Sanchez-Alvarez, M., Del Pozo, M. A. & Bakal, C. AKT-mTOR signaling modulates the dynamics of IRE1 RNAse activity by regulating ER-mitochondria contacts. Sci. Rep. 7, 16497 (2017).
pubmed: 29184100 pmcid: 5705697 doi: 10.1038/s41598-017-16662-1
Shcherbakov, D. et al. Ribosomal mistranslation leads to silencing of the unfolded protein response and increased mitochondrial biogenesis. Commun. Biol. 2, 381 (2019).
pubmed: 31637312 pmcid: 6797716 doi: 10.1038/s42003-019-0626-9
Wang, Z. et al. Induction of heat shock protein 70 inhibits ischemic renal injury. Kidney Int. 79, 861–870 (2011).
pubmed: 21270764 doi: 10.1038/ki.2010.527 pmcid: 21270764
Bonora, M. et al. ATP synthesis and storage. Purinergic Signal 8, 343–357 (2012).
pubmed: 22528680 pmcid: 3360099 doi: 10.1007/s11302-012-9305-8
Ivashchenko, O. et al. Intraperoxisomal redox balance in mammalian cells: oxidative stress and interorganellar cross-talk. Mol. Biol. Cell 22, 1440–1451 (2011).
pubmed: 21372177 pmcid: 3084667 doi: 10.1091/mbc.e10-11-0919
Kabakov, A. E., Budagova, K. R., Latchman, D. S. & Kampinga, H. H. Stressful preconditioning and HSP70 overexpression attenuate proteotoxicity of cellular ATP depletion. Am. J. Physiol. Cell Physiol. 283, C521–C534 (2002).
pubmed: 12107062 doi: 10.1152/ajpcell.00503.2001
Nollen, E. A., Brunsting, J. F., Song, J., Kampinga, H. H. & Morimoto, R. I. Bag1 functions in vivo as a negative regulator of Hsp70 chaperone activity. Mol. Cell Biol. 20, 1083–1088 (2000).
pubmed: 10629065 pmcid: 85225 doi: 10.1128/MCB.20.3.1083-1088.2000
Brooks, C., Wei, Q., Cho, S. G. & Dong, Z. Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models. J. Clin. Invest. 119, 1275–1285 (2009).
pubmed: 19349686 pmcid: 2673870 doi: 10.1172/JCI37829
Marchi, S., Patergnani, S. & Pinton, P. The endoplasmic reticulum-mitochondria connection: one touch, multiple functions. Biochim. Biophys. Acta 1837, 461–469 (2014).
pubmed: 24211533 doi: 10.1016/j.bbabio.2013.10.015
Armstrong, J. A. et al. Oxidative stress alters mitochondrial bioenergetics and modifies pancreatic cell death independently of cyclophilin D, resulting in an apoptosis-to-necrosis shift. J. Biol. Chem. 293, 8032–8047 (2018).
pubmed: 29626097 pmcid: 5971444 doi: 10.1074/jbc.RA118.003200
Shang, F. & Taylor, A. Ubiquitin-proteasome pathway and cellular responses to oxidative stress. Free Radic. Biol. Med. 51, 5–16 (2011).
pubmed: 21530648 pmcid: 3109097 doi: 10.1016/j.freeradbiomed.2011.03.031
Higgins, R. et al. The unfolded protein response triggers site-specific regulatory ubiquitylation of 40S ribosomal proteins. Mol. Cell 59, 35–49 (2015).
pubmed: 26051182 pmcid: 4491043 doi: 10.1016/j.molcel.2015.04.026
Rao, R. V. & Bredesen, D. E. Misfolded proteins, endoplasmic reticulum stress and neurodegeneration. Curr. Opin. Cell Biol. 16, 653–662 (2004).
pubmed: 15530777 pmcid: 3970707 doi: 10.1016/j.ceb.2004.09.012
Chen, L. et al. Cab45S inhibits the ER stress-induced IRE1-JNK pathway and apoptosis via GRP78/BiP. Cell Death Dis. 5, e1219 (2014).
pubmed: 24810055 pmcid: 4047922 doi: 10.1038/cddis.2014.193
Rivas, A., Vidal, R. L. & Hetz, C. Targeting the unfolded protein response for disease intervention. Expert Opin. Ther. Targets 19, 1203–1218 (2015).
pubmed: 26166159 doi: 10.1517/14728222.2015.1053869
Hong, F. et al. CNPY2 is a key initiator of the PERK-CHOP pathway of the unfolded protein response. Nat. Struct. Mol. Biol. 24, 834–839 (2017).
pubmed: 28869608 pmcid: 6102046 doi: 10.1038/nsmb.3458
Lin, J. H. et al. IRE1 signaling affects cell fate during the unfolded protein response. Science 318, 944–949 (2007).
pubmed: 17991856 pmcid: 3670588 doi: 10.1126/science.1146361
Wang, H. et al. Tunicamycin-induced unfolded protein response in the developing mouse brain. Toxicol. Appl. Pharm. 283, 157–167 (2015).
doi: 10.1016/j.taap.2014.12.019
Hu, H., Tian, M., Ding, C. & Yu, S. The C/EBP homologous protein (CHOP) transcription factor functions in endoplasmic reticulum stress-induced apoptosis and microbial infection. Front Immunol. 9, 3083 (2018).
pubmed: 30662442 doi: 10.3389/fimmu.2018.03083
Michaeloudes, C., Bhavsar, P. K., Mumby, S., Chung, K. F. & Adcock, I. M. Dealing with stress: defective metabolic adaptation in chronic obstructive pulmonary disease pathogenesis. Ann. Am. Thorac. Soc. 14, S374–S382 (2017).
pubmed: 29161091 pmcid: 5711272 doi: 10.1513/AnnalsATS.201702-153AW
Pihan, P., Carreras-Sureda, A. & Hetz, C. BCL-2 family: integrating stress responses at the ER to control cell demise. Cell Death Differ. 24, 1478–1487 (2017).
pubmed: 28622296 pmcid: 5563989 doi: 10.1038/cdd.2017.82
Sassano, M. L., van Vliet, A. R. & Agostinis, P. Mitochondria-associated membranes as networking platforms and regulators of cancer cell fate. Front Oncol. 7, 174 (2017).
pubmed: 28868254 pmcid: 5563315 doi: 10.3389/fonc.2017.00174
Bansal, S., Biswas, G. & Avadhani, N. G. Mitochondria-targeted heme oxygenase-1 induces oxidative stress and mitochondrial dysfunction in macrophages, kidney fibroblasts and in chronic alcohol hepatotoxicity. Redox Biol. 2, 273–283 (2014).
pubmed: 24494190 doi: 10.1016/j.redox.2013.07.004
Tilokani, L., Nagashima, S., Paupe, V. & Prudent, J. Mitochondrial dynamics: overview of molecular mechanisms. Essays Biochem. 62, 341–360 (2018).
pubmed: 30030364 pmcid: 6056715 doi: 10.1042/EBC20170104
Iqbal, S. & Hood, D. A. Oxidative stress-induced mitochondrial fragmentation and movement in skeletal muscle myoblasts. Am. J. Physiol. Cell Physiol. 306, C1176–C1183 (2014).
pubmed: 24740540 pmcid: 4059998 doi: 10.1152/ajpcell.00017.2014
Li, T. et al. GOLPH3 mediated Golgi stress response in modulating N2A cell death upon oxygen-glucose deprivation and reoxygenation injury. Mol. Neurobiol. 53, 1377–1385 (2016).
pubmed: 25633094 doi: 10.1007/s12035-014-9083-0
Cooper, J. F. et al. Activation of the mitochondrial unfolded protein response promotes longevity and dopamine neuron survival in Parkinson’s disease models. Sci. Rep. 7, 16441 (2017).
pubmed: 29180793 pmcid: 5703891 doi: 10.1038/s41598-017-16637-2
Favaro, G. et al. DRP1-mediated mitochondrial shape controls calcium homeostasis and muscle mass. Nat. Commun. 10, 2576 (2019).
pubmed: 31189900 pmcid: 6561930 doi: 10.1038/s41467-019-10226-9
Lebeau, J. et al. The PERK arm of the unfolded protein response regulates mitochondrial morphology during acute endoplasmic reticulum stress. Cell Rep. 22, 2827–2836 (2018).
pubmed: 29539413 pmcid: 5870888 doi: 10.1016/j.celrep.2018.02.055
Bhargava, A. et al. Ultrafine particulate matter impairs mitochondrial redox homeostasis and activates phosphatidylinositol 3-kinase mediated DNA damage responses in lymphocytes. Environ. Pollut. 234, 406–419 (2018).
pubmed: 29202419 doi: 10.1016/j.envpol.2017.11.093
Youle, R. J. & van der Bliek, A. M. Mitochondrial fission, fusion, and stress. Science 337, 1062–1065 (2012).
pubmed: 22936770 pmcid: 4762028 doi: 10.1126/science.1219855
Chui, M. H. et al. Chromosomal instability and mTORC1 activation through PTEN loss contribute to proteotoxic stress in ovarian carcinoma. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-18-3029 (2019).
doi: 10.1158/0008-5472.CAN-18-3029 pubmed: 31530568
Yang, M. et al. Sirtuin 2 expression suppresses oxidative stress and senescence of nucleus pulposus cells through inhibition of the p53/p21 pathway. Biochem. Biophys. Res. Commun. 513, 616–622 (2019).
pubmed: 30981502 doi: 10.1016/j.bbrc.2019.03.200
Szabadkai, G. et al. Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca
pubmed: 17178908 pmcid: 2064700 doi: 10.1083/jcb.200608073
Sorrentino, V. et al. Enhancing mitochondrial proteostasis reduces amyloid-beta proteotoxicity. Nature 552, 187–193 (2017).
pubmed: 29211722 pmcid: 5730497 doi: 10.1038/nature25143
Lumley, E. C. et al. Moderate endoplasmic reticulum stress activates a PERK and p38-dependent apoptosis. Cell Stress Chaperones 22, 43–54 (2017).
pubmed: 27761878 doi: 10.1007/s12192-016-0740-2
Walter, P. & Ron, D. The unfolded protein response: from stress pathway to homeostatic regulation. Science 334, 1081–1086 (2011).
pubmed: 22116877 doi: 10.1126/science.1209038
Kim, R., Emi, M., Tanabe, K. & Murakami, S. Role of the unfolded protein response in cell death. Apoptosis 11, 5–13 (2006).
pubmed: 16374548 doi: 10.1007/s10495-005-3088-0
Gotoh, T., Terada, K., Oyadomari, S. & Mori, M. hsp70-DnaJ chaperone pair prevents nitric oxide- and CHOP-induced apoptosis by inhibiting translocation of Bax to mitochondria. Cell Death Differ. 11, 390–402 (2004).
pubmed: 14752510 doi: 10.1038/sj.cdd.4401369
Wilkinson, K. A. & Henley, J. M. Mechanisms, regulation and consequences of protein SUMOylation. Biochem. J. 428, 133–145 (2010).
pubmed: 20462400 pmcid: 3310159 doi: 10.1042/BJ20100158
Molinari, M., Galli, C., Piccaluga, V., Pieren, M. & Paganetti, P. Sequential assistance of molecular chaperones and transient formation of covalent complexes during protein degradation from the ER. J. Cell Biol. 158, 247–257 (2002).
pubmed: 12119363 pmcid: 2173128 doi: 10.1083/jcb.200204122
Zhang, K. & Kaufman, R. J. Kaufman, Protein folding in the endoplasmic reticulum and the unfolded protein response. Handb Exp Pharmacol. 69–91 (2006).
Sun, S. Y. et al. Activation of Akt and eIF4E survival pathways by rapamycin-mediated mammalian target of rapamycin inhibition. Cancer Res. 65, 7052–7058 (2005).
pubmed: 16103051 doi: 10.1158/0008-5472.CAN-05-0917
Cui, J. et al. Rapamycin protects against gentamicin-induced acute kidney injury via autophagy in mini-pig models. Sci Rep. 5, 11256 (2015).
pubmed: 26052900 pmcid: 4459224 doi: 10.1038/srep11256
Ramachandiran, S. et al. Mitogen-activated protein kinases contribute to reactive oxygen species-induced cell death in renal proximal tubule epithelial cells. Chem Res Toxicol 15, 1635–1642 (2002).
pubmed: 12482247 doi: 10.1021/tx0200663
Park, K. M., Chen, A. & Bonventre, J. V. Prevention of kidney ischemia/reperfusion-induced functional injury and JNK, p38, and MAPK kinase activation by remote ischemic pretreatment. J Biol Chem. 276, 11870–11876 (2001).
pubmed: 11150293 doi: 10.1074/jbc.M007518200
Papadakis, E. S. et al. The regulation of Bax by c-Jun N-terminal protein kinase (JNK) is a prerequisite to the mitochondrial-induced apoptotic pathway. FEBS Lett. 580, 1320–1326 (2006).
pubmed: 16458303 doi: 10.1016/j.febslet.2006.01.053
Trinei, M. et al. A p53-p66Shc signalling pathway controls intracellular redox status, levels of oxidation-damaged DNA and oxidative stress-induced apoptosis. Oncogene 21, 3872–3878 (2002).
pubmed: 12032825 doi: 10.1038/sj.onc.1205513
Berns, K. et al. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 428, 431–437 (2004).
pubmed: 15042092 doi: 10.1038/nature02371
Nisoli, E. et al. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 310, 314–317 (2005).
pubmed: 16224023 doi: 10.1126/science.1117728
Lopez-Novoa, J. M. et al. New insights into the mechanism of aminoglycoside nephrotoxicity: an integrative point of view. Kidney Int. 79, 33–45 (2011).
pubmed: 20861826 doi: 10.1038/ki.2010.337
Ling, H. et al. Attenuation of renal ischemia-reperfusion injury in inducible nitric oxide synthase knockout mice. Am J Physiol. 277, F383–F390 (1999).
pubmed: 10484522
Casanova, A. G. et al. Key role of oxidative stress in animal models of aminoglycoside nephrotoxicity revealed by a systematic analysis of the antioxidant-to-nephroprotective correlation. Toxicology 385, 10–17 (2017).
pubmed: 28472626 doi: 10.1016/j.tox.2017.04.015
Moreira, M. A. et al. Ascorbic acid reduces gentamicin-induced nephrotoxicity in rats through the control of reactive oxygen species. Clin Nutr. 33, 296–301 (2014).
pubmed: 23810398 doi: 10.1016/j.clnu.2013.05.005
Hetz, C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol. 13, 89–102 (2012).
pubmed: 22251901 doi: 10.1038/nrm3270
Guo, C. et al. SUMOylation occurs in acute kidney injury and plays a cytoprotective role. Biochim Biophys Acta. 1852, 482–489 (2015).
pubmed: 25533125 doi: 10.1016/j.bbadis.2014.12.013
Czubryt, M. P. et al. Regulation of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1 alpha) and mitochondrial function by MEF2 and HDAC5. Proc Natl Acad Sci USA. 100, 1711–1716 (2003).
pubmed: 12578979 doi: 10.1073/pnas.0337639100
Puigserver, P. & Spiegelman, B. M. Spiegelman, Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Rev. 24, 78–90 (2003).
pubmed: 12588810 doi: 10.1210/er.2002-0012

Auteurs

Chinaemere Igwebuike (C)

Boston Medical Center, Department of Medicine, Renal Section, Boston, MA, USA.

Julia Yaglom (J)

Boston University School of Medicine, Department of Biochemistry, Boston, MA, USA.
Ariel University, Department of Molecular Biology, Ariel, West Bank, Israel.

Leah Huiting (L)

Boston University School of Medicine, Department of Pharmacology and Experimental Therapeutics, Boston, MA, USA.

Hui Feng (H)

Boston University School of Medicine, Department of Pharmacology and Experimental Therapeutics, Boston, MA, USA.

Joshua D Campbell (JD)

Boston University School of Medicine, Department of Computational Biomedicine, Boston, MA, USA.

Zhiyong Wang (Z)

Boston Medical Center, Department of Medicine, Renal Section, Boston, MA, USA.

Andrea Havasi (A)

Boston Medical Center, Department of Medicine, Renal Section, Boston, MA, USA.

David Pimentel (D)

Boston University School of Medicine, Department of Cardiology, Boston, MA, USA.

Michael Y Sherman (MY)

Ariel University, Department of Molecular Biology, Ariel, West Bank, Israel.
Boston University School of Medicine, Department of Cardiology, Boston, MA, USA.

Steven C Borkan (SC)

Boston Medical Center, Department of Medicine, Renal Section, Boston, MA, USA. sborkan@bu.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH