Faster Atlantic currents drive poleward expansion of temperate phytoplankton in the Arctic Ocean.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
06 04 2020
06 04 2020
Historique:
received:
30
03
2019
accepted:
03
03
2020
entrez:
7
4
2020
pubmed:
7
4
2020
medline:
30
7
2020
Statut:
epublish
Résumé
The Arctic marine biome, shrinking with increasing temperature and receding sea-ice cover, is tightly connected to lower latitudes through the North Atlantic. By flowing northward through the European Arctic Corridor (the main Arctic gateway where 80% of in- and outflow takes place), the North Atlantic Waters transport most of the ocean heat, but also nutrients and planktonic organisms toward the Arctic Ocean. Using satellite-derived altimetry observations, we reveal an increase, up to two-fold, in North Atlantic current surface velocities over the last 24 years. More importantly, we show evidence that the North Atlantic current and its variability shape the spatial distribution of the coccolithophore Emiliania huxleyi (Ehux), a tracer for temperate ecosystems. We further demonstrate that bio-advection, rather than water temperature as previously assumed, is a major mechanism responsible for the recent poleward intrusions of southern species like Ehux. Our findings confirm the biological and physical "Atlantification" of the Arctic Ocean with potential alterations of the Arctic marine food web and biogeochemical cycles.
Identifiants
pubmed: 32249780
doi: 10.1038/s41467-020-15485-5
pii: 10.1038/s41467-020-15485-5
pmc: PMC7136244
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1705Références
Wassmann, P., Slagstad, D. & Ellingsen, I. Primary production and climatic variability in the European sector of the Arctic Ocean prior to 2007: preliminary results. Polar Biol. 33, 1641–1650 (2010).
doi: 10.1007/s00300-010-0839-3
Huang, J. et al. Recently amplified arctic warming has contributed to a continual global warming trend. Nat. Clim. Chang 7, 875–879 (2017).
doi: 10.1038/s41558-017-0009-5
Stroeve, J. & Notz, D. Changing state of Arctic sea ice across all seasons. Environ. Res. Lett. 13, 103001 (2018).
doi: 10.1088/1748-9326/aade56
Oziel, L., Sirven, J. & Gascard, J. C. The Barents Sea frontal zones and water masses variability (1980–2011). Ocean Sci. 12, 169–184 (2016).
doi: 10.5194/os-12-169-2016
Årthun, M., Eldevik, T., Smedsrud, L. H., Skagseth, Øystein & Ingvaldsen, R. B. Quantifying the influence of atlantic heat on barents sea ice variability and retreat. J. Clim. 25, 4736–4743 (2012).
doi: 10.1175/JCLI-D-11-00466.1
Smedsrud, L. H. et al. The role of the Barents Sea in the Arctic Climate System. Rev. Geophys. 51, 415–449 (2013).
doi: 10.1002/rog.20017
Lien, V. S., Schlichtholz, P., Skagseth, Ø. & Vikebø, F. B. Wind-driven Atlantic water flow as a direct mode for reduced Barents Sea ice cover. J. Clim. 30, 803–812 (2016).
doi: 10.1175/JCLI-D-16-0025.1
Polyakov, I. V. et al. Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. Science 356, 285–291 (2017).
doi: 10.1126/science.aai8204
Wassmann, P., Slagstad, D., Riser, C. W. & Reigstad, M. Modelling the ecosystem dynamics of the Barents Sea including the marginal ice zone. J. Mar. Syst. 59, 1–24 (2006).
doi: 10.1016/j.jmarsys.2005.05.006
Ardyna, M. et al. Parameterization of vertical chlorophyll a in the Arctic Ocean: impact of the subsurface chlorophyll maximum on regional, seasonal, and annual primary production estimates. Biogeosciences 10, 4383–4404 (2013).
doi: 10.5194/bg-10-4383-2013
Bélanger, S., Babin, M. & Tremblay, J.-É. Increasing cloudiness in Arctic damps the increase in phytoplankton primary production due to sea ice receding. Biogeosciences 10, 4087–4101 (2013).
doi: 10.5194/bg-10-4087-2013
Dalpadado, P. et al. Productivity in the Barents Sea - Response to Recent Climate Variability. PLoS ONE 9, e95273 (2014).
doi: 10.1371/journal.pone.0095273
pubmed: 4006807
pmcid: 4006807
Hegseth, E. N. & Sundfjord, A. Intrusion and blooming of Atlantic phytoplankton species in the high Arctic. J. Mar. Syst. 74, 108–119 (2008).
doi: 10.1016/j.jmarsys.2007.11.011
Winter, A., Henderiks, J., Beaufort, L., Rickaby, R. E. M. & Brown, C. W. Poleward expansion of the coccolithophore Emiliania huxleyi. J. Plankton Res. 36, 316–325 (2014).
doi: 10.1093/plankt/fbt110
Oziel, L. et al. Role for Atlantic inflows and sea ice loss on shifting phytoplankton blooms in the Barents Sea. J. Geophys. Res. Ocean 122, 5121–5139 (2017).
doi: 10.1002/2016JC012582
Neukermans, G., Oziel, L. & Babin, M. Increased intrusion of warming Atlantic water leads to rapid expansion of temperate phytoplankton in the Arctic. Glob. Chang. Biol. 24, 2545–2553 (2018).
doi: 10.1111/gcb.14075
Fossheim, M. et al. Recent warming leads to a rapid borealization of fish communities in the Arctic. Nat. Clim. Chang. 5, 673–677 (2015).
doi: 10.1038/nclimate2647
Ingvaldsen, R. B. & Gjøsæter, H. Responses in spatial distribution of Barents Sea capelin to changes in stock size, ocean temperature and ice cover. Mar. Biol. Res. 9, 867–877 (2013).
doi: 10.1080/17451000.2013.775450
Eriksen, E., Skjoldal, H. R., Gjøsæter, H. & Primicerio, R. Spatial and temporal changes in the Barents Sea pelagic compartment during the recent warming. Prog. Oceanogr. 151, 206–226 (2017).
doi: 10.1016/j.pocean.2016.12.009
Olszewska, A. et al. Interannual zooplankton variability in the main pathways of the Atlantic water flow into the Arctic Ocean (Fram Strait and Barents Sea branches). ICES J. Mar. Sci. 74, 1921–1936 (2017).
doi: 10.1093/icesjms/fsx033
Edvardsen, A., Slagstad, D., Tande, K. S. & Jaccard, P. Assessing zooplankton advection in the Barents Sea using underway measurements and modelling. Fish. Oceanogr. 12, 61–74 (2003).
doi: 10.1046/j.1365-2419.2003.00219.x
Hunt, G. L. et al. Advection in polar and sub-polar environments: Impacts on high latitude marine ecosystems. Prog. Oceanogr. 149, 40–81 (2016).
doi: 10.1016/j.pocean.2016.10.004
Wassmann, P. et al. The contiguous domains of Arctic Ocean advection: trails of life and death. Prog. Oceanogr. 139, 42–65 (2015).
doi: 10.1016/j.pocean.2015.06.011
Sundfjord, A. et al. Seasonal variation in transport of zooplankton Into the Arctic basin through the Atlantic gateway, Fram Strait. Front. Mar. Sci. 5, 1–22 (2018).
doi: 10.3389/fmars.2018.00001
Wassmann, P., Slagstad, D., Ellingsen, I. & Ross, R. M. Advection of Mesozooplankton Into the Northern Svalbard Shelf Region. Front. Mar. Sci. 6, 1–10 (2019).
doi: 10.3389/fmars.2019.00458
Slagstad, D., Wassmann, P. F. J. & Ellingsen, I. Physical constrains and productivity in the future Arctic Ocean. Front. Mar. Sci. 2, 1–23 (2015).
doi: 10.3389/fmars.2015.00085
Popova, E. E., Yool, A., Aksenov, Y. & Coward, A. C. Role of advection in Arctic Ocean lower trophic dynamics: a modeling perspective. J. Geophys. Res. Ocean 118, 1571–1586 (2013).
doi: 10.1002/jgrc.20126
Carmack, E. & Wassmann, P. Food webs and physical-biological coupling on pan-Arctic shelves: unifying concepts and comprehensive perspectives. Prog. Oceanogr. 71, 446–477 (2006).
doi: 10.1016/j.pocean.2006.10.004
Vernet, M. et al. Influence of phytoplankton advection on the productivity along the Atlantic Water Inflow to the Arctic Ocean. Front. Mar. Sci. 6, 583 (2019).
doi: 10.3389/fmars.2019.00583
Balch, W. M. Re-evaluation of the physiological ecology of coccolithophores. Coccolithophores 165–190 (Springer Berlin Heidelberg, 2004).
Paasche, E. A review of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae), with particular reference to growth, coccolith formation, and calcification-photosynthesis interactions. Phycologia 40, 503–529 (2001).
doi: 10.2216/i0031-8884-40-6-503.1
Gafar, N. A. & Schulz, K. G. A three-dimensional niche comparison of Emiliania huxleyi and Gephyrocapsa oceanica: Reconciling observations with projections. Biogeosciences 15, 3541–3560 (2018).
doi: 10.5194/bg-15-3541-2018
Bratbak, G., Wilson, W. & Heldal, M. Viral control of Emiliania huxleyi blooms? J. Mar. Syst. 9, 75–81 (1996).
doi: 10.1016/0924-7963(96)00018-8
Vardi, A. et al. Host-virus dynamics and subcellular controls of cell fate in a natural coccolithophore population. Proc. Natl Acad. Sci. USA 109, 19327–19332 (2012).
doi: 10.1073/pnas.1208895109
Highfield, A., Evans, C., Walne, A., Miller, P. I. & Schroeder, D. C. How many Coccolithovirus genotypes does it take to terminate an Emiliania huxleyi bloom? Virology 466–467, 138–145 (2014).
doi: 10.1016/j.virol.2014.07.017
pubmed: 25085627
pmcid: 25085627
Berge, G. Discoloration of the sea due to coccolithus huxleyi “bloom”. Sarsia 6, 27–40 (1962).
doi: 10.1080/00364827.1962.10410259
Tyrrell, T. & Merico, A. in Coccolithophores (eds. Thierstein, H. R. et al.) 75–97 (Springer, 2004).
Birkenes, E. Phytoplankton in the Oslo Fjord during a ‘Coccolithus huxleyi-summer’. Avh. Nor. Vidensk. Akad. Oslo I. Mat. Nat. Kl. 2, 1–23 (1952).
Garcia, V. M. T. et al. Environmental factors controlling the phytoplankton blooms at the Patagonia shelf-break in spring. Deep. Res. Part I Oceanogr. Res. Pap. 55, 1150–1166 (2008).
doi: 10.1016/j.dsr.2008.04.011
Raj, R. P. et al. Quantifying Atlantic Water transport to the Nordic Seas by remote sensing. Remote Sens. Environ. 216, 758–769 (2018).
doi: 10.1016/j.rse.2018.04.055
Lien, V. S., Vikebø, F. B. & Skagseth, Ø. One mechanism contributing to co-variability of the Atlantic inflow branches to the Arctic. Nat. Commun. 4, 1488 (2013).
doi: 10.1038/ncomms2505
pubmed: 3586715
pmcid: 3586715
Hátún, H., Sande, A. B., Drange, H., Hansen, B. & Valdimarsson, H. Ocean science: influence of the atlantic subpolar gyre on the thermohaline circulation. Science 309, 1841–1844 (2005).
doi: 10.1126/science.1114777
Zhang, L. et al. The North Atlantic Oscillation as a driver of rapid climate change in the Northern Hemisphere. Nat. Geosci. 9, 509–512 (2016).
doi: 10.1038/ngeo2827
Signorini, S. R. & McClain, C. R. Environmental factors controlling the Barents Sea spring-summer phytoplankton blooms. Geophys. Res. Lett. 36, 1–5 (2009).
doi: 10.1029/2009GL037695
Riebesell, U. et al. Competitive fitness of a predominant pelagic calcifier impaired by ocean acidification. Nat. Geosci. 10, 19–23 (2017).
doi: 10.1038/ngeo2854
Taylor, A. R., Brownlee, C. & Wheeler, G. Coccolithophore cell biology: chalking up progress. Ann. Rev. Mar. Sci. 9, 283–310 (2016).
doi: 10.1146/annurev-marine-122414-034032
Beaufort, L. et al. Sensitivity of coccolithophores to carbonate chemistry and ocean acidification. Nature 476, 80–83 (2011).
doi: 10.1038/nature10295
Delille, B. et al. Response of primary production and calcification to changes of pCO2 during experimental blooms of the coccolithophorid Emiliania huxleyi. Glob. Biogeochem. Cycles 19, 1–14 (2005).
doi: 10.1029/2004GB002318
Klaas, C. & Archer, D. E. Association of sinking organic matter with various types of mineral ballast in the deep sea: Implications for the rain ratio. Glob. Biogeochem. Cycles 16, 63-1–63–14 (2002).
doi: 10.1029/2001GB001765
Baumann, M. in Geological History of the Polar Oceans: Arctic versus Antarcti pp. 437–445 (Springer, Netherlands, 1990).
Dalpadado, P. et al. Climate effects on Barents Sea ecosystem dynamics. ICES J. Mar. Sci. 69, 1303–1316 (2012).
doi: 10.1093/icesjms/fss063
Lind, S., Ingvaldsen, R. & Furevik, T. Arctic warming hotspot in the northern Barents Sea linked to declining sea-ice import. Nat. Clim. Change 8, 634–639 (2018).
doi: 10.1038/s41558-018-0205-y
Valiela, I. Coastal altimetry. Marine Ecological Processes 189-416 (Springer, 1995).
Olli, K. et al. The fate of production in the central Arctic Ocean—top-down regulation by zooplankton expatriates? Prog. Oceanogr. 72, 84–113 (2007).
doi: 10.1016/j.pocean.2006.08.002
Rudels, B., Jones, E. P., Schauer, U. & Eriksson, P. Atlantic sources of the Arctic Ocean halocline. Polar Res. 23, 10767 (2003).
Holligan, P. M. et al. A biogeochemical study of the coccolithophore, Emiliania huxleyi, in the North Atlantic. Glob. Biogeochem. Cycles 7, 879–900 (1993).
doi: 10.1029/93GB01731
Kaartvedt, S. Photoperiod may constrain the effect of global warming in arctic marine systems. J. Plankton Res. 30, 1203–1206 (2008).
doi: 10.1093/plankt/fbn075
Krumhardt, K. M., Lovenduski, N. S., Iglesias-Rodriguez, M. D. & Kleypas, J. A. Coccolithophore growth and calcification in a changing ocean. Prog. Oceanogr. 159, 276–295 (2017).
doi: 10.1016/j.pocean.2017.10.007
Williams, W. J. & Carmack, E. C. The ‘interior’ shelves of the Arctic Ocean: physical oceanographic setting, climatology and effects of sea-ice retreat on cross-shelf exchange. Prog. Oceanogr. 139, 24–41 (2015).
doi: 10.1016/j.pocean.2015.07.008
Backman, J., Fornaciari, E. & Rio, D. Biochronology and paleoceanography of late Pleistocene and Holocene calcareous nannofossil abundances across the Arctic Basin. Mar. Micropaleontol. 72, 86–98 (2009).
doi: 10.1016/j.marmicro.2009.04.001
Kortsch, S., Primicerio, R., Fossheim, M., Dolgov, A. V. & Aschan, M. Climate change alters the structure of arctic marine food webs due to poleward shifts of boreal generalists. Proc. R. Soc. B Biol. Sci. 282, 20151546 (2015).
doi: 10.1098/rspb.2015.1546
Frainer, A. et al. Climate-driven changes in functional biogeography of Arctic marine fish communities. Proc. Natl Acad. Sci. USA 114, 12202–12207 (2017).
doi: 10.1073/pnas.1706080114
Rey, F. Declining silicate concentrations in the Norwegian and Barents Seas. ICES J. Mar. Sci. 69, 208–212 (2012).
doi: 10.1093/icesjms/fss007
Hátún, H. et al. The subpolar gyre regulates silicate concentrations in the North Atlantic. Sci. Rep. 7, 1–9 (2017).
doi: 10.1038/s41598-017-14837-4
Renaud, P. E. et al. Pelagic food-webs in a changing Arctic: a trait-based perspective suggests a mode of resilience. ICES J. Mar. Sci. 75, 1871–1881 (2018).
doi: 10.1093/icesjms/fsy063
Bogstad, B., Gjøsæter, H., Haug, T. & Lindstrøm, U. A review of the battle for food in the Barents Sea: Cod vs. marine mammals. Front. Ecol. Evol. 3, 29 (2015).
doi: 10.3389/fevo.2015.00029
Beaugrand, G. et al. Prediction of unprecedented biological shifts in the global ocean. Nat. Clim. Chang 9, 237–243 (2019).
doi: 10.1038/s41558-019-0420-1
Woodgate, R. A. Increases in the Pacific inflow to the Arctic from 1990 to 2015, and insights into seasonal trends and driving mechanisms from year-round Bering Strait mooring data. Prog. Oceanogr. 160, 124–154 (2018).
doi: 10.1016/j.pocean.2017.12.007
Mork, K. A. & Skagseth, Øystein. A quantitative description of the Norwegian Atlantic current by combining altimetry and hydrography. Ocean Sci. 6, 901–911 (2010).
doi: 10.5194/os-6-901-2010
Vignudelli, S., Kostianoy, A. G., Cipollini, P. & Benveniste, J. Coastal altimetry. 389–413 (Springer 2011).
Volkov, D. L. & Pujol, M.-I. I. Quality assessment of a satellite altimetry data product in the Nordic, Barents, and Kara seas. J. Geophys. Res. Ocean 117, 1–18 (2012).
doi: 10.1029/2011JC007557
Reynolds, R. W. et al. Daily high-resolution-blended analyses for sea surface temperature. J. Clim. 20, 5473–5496 (2007).
doi: 10.1175/2007JCLI1824.1
Gordon, H. R. et al. Retrieval of coccolithophore calcite concentration from SeaWiFS imagery. Geophys. Res. Lett. 28, 1587–1590 (2001).
doi: 10.1029/2000GL012025
Balch, W. M., Gordon, H. R., Bowler, B. C., Drapeau, D. T. & Booth, E. S. Calcium carbonate measurements in the surface global ocean based on Moderate-Resolution Imaging Spectroradiometer data. J. Geophys. Res. Ocean 110, 1–21 (2005).
doi: 10.1029/2004JC002560
Paasche, E. Roles of nitrogen and phosphorus in coccolith formation in Emiliania Huxleyi (prymnesiophyceae). Eur. J. Phycol. 33, 33–42 (1998).
doi: 10.1080/09670269810001736513
Borman, A. H., De Jong, E. W., Huizinga, M. & Westbroek, P. in Biomineralization and Biological Metal Accumulation 303–305 (Springer, Netherlands, 1983).
Westbroek, P., Young, J. R. & Linshooten, K. Coccolith production (Biomineralization) in the Marine Alga Emiliania huxleyi. J. Protozool. 36, 368–373 (1989).
doi: 10.1111/j.1550-7408.1989.tb05528.x
Feng, Y. et al. Interactive effects of increased pCO2, temperature and irradiance on the marine coccolithophore Emiliania huxleyi (Prymnesiophyceae). Eur. J. Phycol. 43, 87–98 (2008).
doi: 10.1080/09670260701664674
Dylmer, C. V., Giraudeau, J., Hanquiez, V. & Husum, K. The coccolithophores Emiliania huxleyi and Coccolithus pelagicus: Extant populations from the Norwegian-Iceland Seas and Fram Strait. Deep. Res. Part I Oceanogr. Res. Pap. 98, 1–9 (2015).
doi: 10.1016/j.dsr.2014.11.012
Giraudeau, J. et al. A survey of the summer coccolithophore community in the western Barents Sea. J. Mar. Syst. 158, 93–105 (2016).
doi: 10.1016/j.jmarsys.2016.02.012
Hovland, E. K. et al. Optical impact of an Emiliania huxleyi bloom in the frontal region of the Barents Sea. J. Mar. Syst. 130, 228–240 (2014).
doi: 10.1016/j.jmarsys.2012.07.002
Hopkins, J., Henson, S. A., Painter, S. C., Tyrrell, T. & Poulton, A. J. Phenological characteristics of global coccolithophore blooms. Glob. Biogeochem. Cycles 29, 239–253 (2015).
doi: 10.1002/2014GB004919
Volkov, D. L., Landerer, F. W. & Kirillov, S. A. The genesis of sea level variability in the Barents Sea. Cont. Shelf Res. 66, 92–104 (2013).
doi: 10.1016/j.csr.2013.07.007
Ingvaldsen, R. B., Asplin, L. & Loeng, H. Velocity field of the western entrance to the Barents Sea. J. Geophys. Res. Ocean 109, 1–12 (2004).
doi: 10.1029/2003JC001811