Substantia Nigra Volume Dissociates Bradykinesia and Rigidity from Tremor in Parkinson's Disease: A 7 Tesla Imaging Study.
Aged
Autopsy
Female
Gait Disorders, Neurologic
/ etiology
Humans
Hypokinesia
/ etiology
Magnetic Resonance Imaging
/ methods
Male
Middle Aged
Muscle Rigidity
/ etiology
Parkinson Disease
/ complications
Postural Balance
/ physiology
Red Nucleus
/ diagnostic imaging
Severity of Illness Index
Substantia Nigra
/ diagnostic imaging
Subthalamic Nucleus
/ diagnostic imaging
Time Factors
Tremor
/ etiology
Parkinson’s disease
quantitative
susceptibility mapping
substantia nigra
ultra-high field MRI
Journal
Journal of Parkinson's disease
ISSN: 1877-718X
Titre abrégé: J Parkinsons Dis
Pays: Netherlands
ID NLM: 101567362
Informations de publication
Date de publication:
2020
2020
Historique:
pubmed:
7
4
2020
medline:
27
7
2021
entrez:
7
4
2020
Statut:
ppublish
Résumé
In postmortem analysis of late stage Parkinson's disease (PD) neuronal loss in the substantial nigra (SN) correlates with the antemortem severity of bradykinesia and rigidity, but not tremor. To investigate the relationship between midbrain nuclei volume as an in vivo biomarker for surviving neurons in mild-to-moderate patients using 7.0 Tesla MRI. We performed ultra-high resolution quantitative susceptibility mapping (QSM) on the midbrain in 32 PD participants with less than 10 years duration and 8 healthy controls. Following blinded manual segmentation, the individual volumes of the SN, subthalamic nucleus, and red nucleus were measured. We then determined the associations between the midbrain nuclei and clinical metrics (age, disease duration, MDS-UPDRS motor score, and subscores for bradykinesia/rigidity, tremor, and postural instability/gait difficulty). We found that smaller SN correlated with longer disease duration (r = -0.49, p = 0.004), more severe MDS-UPDRS motor score (r = -0.42, p = 0.016), and more severe bradykinesia-rigidity subscore (r = -0.47, p = 0.007), but not tremor or postural instability/gait difficulty subscores. In a hemi-body analysis, bradykinesia-rigidity severity only correlated with SN contralateral to the less-affected hemi-body, and not contralateral to the more-affected hemi-body, possibly reflecting the greatest change in dopamine neuron loss early in disease. Multivariate generalized estimating equation model confirmed that bradykinesia-rigidity severity, age, and disease duration, but not tremor severity, predicted SN volume. In mild-to-moderate PD, SN volume relates to motor manifestations in a motor domain-specific and laterality-dependent manner. Non-invasive in vivo 7.0 Tesla QSM may serve as a biomarker in longitudinal studies of SN atrophy and in studies of people at risk for developing PD.
Sections du résumé
BACKGROUND
In postmortem analysis of late stage Parkinson's disease (PD) neuronal loss in the substantial nigra (SN) correlates with the antemortem severity of bradykinesia and rigidity, but not tremor.
OBJECTIVE
To investigate the relationship between midbrain nuclei volume as an in vivo biomarker for surviving neurons in mild-to-moderate patients using 7.0 Tesla MRI.
METHODS
We performed ultra-high resolution quantitative susceptibility mapping (QSM) on the midbrain in 32 PD participants with less than 10 years duration and 8 healthy controls. Following blinded manual segmentation, the individual volumes of the SN, subthalamic nucleus, and red nucleus were measured. We then determined the associations between the midbrain nuclei and clinical metrics (age, disease duration, MDS-UPDRS motor score, and subscores for bradykinesia/rigidity, tremor, and postural instability/gait difficulty).
RESULTS
We found that smaller SN correlated with longer disease duration (r = -0.49, p = 0.004), more severe MDS-UPDRS motor score (r = -0.42, p = 0.016), and more severe bradykinesia-rigidity subscore (r = -0.47, p = 0.007), but not tremor or postural instability/gait difficulty subscores. In a hemi-body analysis, bradykinesia-rigidity severity only correlated with SN contralateral to the less-affected hemi-body, and not contralateral to the more-affected hemi-body, possibly reflecting the greatest change in dopamine neuron loss early in disease. Multivariate generalized estimating equation model confirmed that bradykinesia-rigidity severity, age, and disease duration, but not tremor severity, predicted SN volume.
CONCLUSIONS
In mild-to-moderate PD, SN volume relates to motor manifestations in a motor domain-specific and laterality-dependent manner. Non-invasive in vivo 7.0 Tesla QSM may serve as a biomarker in longitudinal studies of SN atrophy and in studies of people at risk for developing PD.
Identifiants
pubmed: 32250317
pii: JPD191890
doi: 10.3233/JPD-191890
pmc: PMC7242837
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
591-604Subventions
Organisme : NINDS NIH HHS
ID : K23 NS075097
Pays : United States
Organisme : NIA NIH HHS
ID : P50 AG047366
Pays : United States
Organisme : NIBIB NIH HHS
ID : P41 EB015891
Pays : United States
Organisme : NCRR NIH HHS
ID : S10 RR026351
Pays : United States
Références
Mov Disord. 2008 Jan 30;23(2):168-73
pubmed: 17973325
Contemp Neurol Ser. 1971;8:83-117
pubmed: 5005690
PLoS One. 2017 Apr 19;12(4):e0176130
pubmed: 28423027
Magn Reson Imaging. 2015 Jun;33(5):559-65
pubmed: 25721997
NMR Biomed. 2017 Apr;30(4):
pubmed: 26853890
Brain. 2015 May;138(Pt 5):1284-96
pubmed: 25765327
AJNR Am J Neuroradiol. 2002 Nov-Dec;23(10):1747-56
pubmed: 12427635
AJNR Am J Neuroradiol. 2011 Apr;32(4):688-94
pubmed: 21183619
Parkinsonism Relat Disord. 2019 Oct 10;:
pubmed: 31629653
J Med Imaging (Bellingham). 2018 Jan;5(1):015002
pubmed: 29340288
Mov Disord. 2016 Mar;31(3):317-24
pubmed: 26362242
Mov Disord. 2003 May;18(5):467-86
pubmed: 12722160
Drugs Aging. 2000 Apr;16(4):273-8
pubmed: 10874522
Magn Reson Med. 2010 Jan;63(1):194-206
pubmed: 19953507
Magn Reson Med. 2012 Nov;68(5):1563-9
pubmed: 22851199
Acta Anat (Basel). 1992;144(3):235-57
pubmed: 1529678
Neurosurgery. 2010 Dec;67(6):1745-56; discussion 1756
pubmed: 21107206
Mov Disord. 2014 Nov;29(13):1574-81
pubmed: 25308960
AJNR Am J Neuroradiol. 2015 Mar;36(3):461-6
pubmed: 25376811
Brain. 2013 Aug;136(Pt 8):2419-31
pubmed: 23884810
Brain. 2010 Nov;133(11):3423-33
pubmed: 20736190
Front Hum Neurosci. 2014 Nov 05;8:876
pubmed: 25414656
Neuroimage. 2009 Feb 15;44(4):1259-66
pubmed: 19027861
J Neuropathol Exp Neurol. 1991 Nov;50(6):743-55
pubmed: 1748881
Magn Reson Med. 2015 Jan;73(1):82-101
pubmed: 25044035
Mov Disord. 2018 Sep;33(9):1432-1439
pubmed: 29756231
AJNR Am J Neuroradiol. 2015 Jun;36(6):1102-8
pubmed: 25767187
J Magn Reson Imaging. 2012 Jan;35(1):48-55
pubmed: 21987471
J Neurosci. 2010 Jan 20;30(3):1049-56
pubmed: 20089913
J Neural Transm Suppl. 1999;56:1-29
pubmed: 10370901
Neurosci Lett. 2015 Jul 23;600:62-8
pubmed: 26054938
Neuroimage. 2013 Jan 15;65:299-314
pubmed: 23036448
Neurology. 2007 May 22;68(21):1820-5
pubmed: 17515544
Brain. 2009 Nov;132(Pt 11):2947-57
pubmed: 19759203
Radiology. 2014 Jun;271(3):831-8
pubmed: 24601752
Mov Disord. 2018 Sep;33(9):1423-1431
pubmed: 29756399
Parkinsonism Relat Disord. 2016 May;26:47-54
pubmed: 26951846
J Parkinsons Dis. 2018;8(s1):S47-S51
pubmed: 30584163
Arch Neurol. 2003 Apr;60(4):529-33
pubmed: 12707066
Mov Disord. 2008 Nov 15;23(15):2129-70
pubmed: 19025984
Ann Neurol. 2012 Feb;71(2):267-77
pubmed: 22367998
Neurology. 2013 Aug 6;81(6):534-40
pubmed: 23843466
Neurology. 2008 Feb 12;70(7):512-20
pubmed: 17898323
Magn Reson Med. 2016 Feb;75(2):801-9
pubmed: 25820458
Prog Brain Res. 2010;183:259-73
pubmed: 20696324
AJNR Am J Neuroradiol. 2015 Jul;36(7):1204-15
pubmed: 25523591
Br J Clin Pharmacol. 2012 Aug;74(2):267-83
pubmed: 22283961
Acta Neurol Scand Suppl. 1991;136:87-90
pubmed: 1801543
Eur J Radiol. 2018 Dec;109:48-56
pubmed: 30527311
Neuroimage. 2004;23 Suppl 1:S208-19
pubmed: 15501092
NMR Biomed. 2017 Apr;30(4):
pubmed: 27862452
Neurology. 2010 Oct 5;75(14):1292-9
pubmed: 20921515
Proc Natl Acad Sci U S A. 2012 Aug 28;109(35):14212-7
pubmed: 22891307
Magn Reson Med. 2011 Sep;66(3):777-83
pubmed: 21465541
Acta Neurochir (Wien). 2012 Nov;154(11):2051-62
pubmed: 22930282
Z Med Phys. 2016 Mar;26(1):6-34
pubmed: 26702760
Magn Reson Med. 1990 Nov;16(2):192-225
pubmed: 2266841
Magn Reson Med. 2015 Aug;74(2):564-70
pubmed: 25137340
Invest Radiol. 2014 May;49(5):290-8
pubmed: 24566291
Nucl Med Commun. 2005 May;26(5):421-6
pubmed: 15838424
Mov Disord. 2011 Oct;26(12):2226-31
pubmed: 21674626
J Neurosurg. 2010 Sep;113(3):639-47
pubmed: 20380532
IEEE Trans Med Imaging. 2010 Feb;29(2):273-81
pubmed: 19502123
Ann Neurol. 2016 Mar;79(3):448-63
pubmed: 26696272
Hum Brain Mapp. 2012 Dec;33(12):2831-42
pubmed: 21932259
J Neurol Sci. 1997 Oct 3;151(1):83-7
pubmed: 9335015
Neurology. 2001 Dec 11;57(11):2089-94
pubmed: 11739831
PLoS One. 2019 Jul 17;14(7):e0219705
pubmed: 31314813
Mov Disord. 2011 Mar;26(4):713-8
pubmed: 21506148
Magn Reson Med. 2013 Feb;69(2):467-76
pubmed: 22488774
Curr Alzheimer Res. 2016;13(5):534-44
pubmed: 26567737
Curr Opin Neurol. 2009 Aug;22(4):387-93
pubmed: 19494773
J Magn Reson Imaging. 2017 Oct;46(4):951-971
pubmed: 28295954
Parkinsonism Relat Disord. 2017 Nov;44:51-57
pubmed: 28886909
Neuroimage. 2019 Mar;188:465-472
pubmed: 30578927
Neuroimage. 2006 Jul 1;31(3):1116-28
pubmed: 16545965
Radiology. 2014 Feb;270(2):496-505
pubmed: 24126366
Hum Brain Mapp. 2015 Nov;36(11):4407-20
pubmed: 26249218
J Neurol Sci. 1973 Dec;20(4):415-55
pubmed: 4272516
Radiology. 2013 Oct;269(1):216-23
pubmed: 23674786
Neuroimage. 2012 Feb 1;59(3):2560-8
pubmed: 21925276
Front Hum Neurosci. 2013 Oct 29;7:710
pubmed: 24194710
Radiology. 2014 Apr;271(1):183-92
pubmed: 24475808
PLoS One. 2014 Apr 07;9(4):e93814
pubmed: 24710392
Mov Disord. 2013 May;28(5):668-70
pubmed: 23408503
Brain. 2016 Mar;139(Pt 3):986-98
pubmed: 26811253