Regulating strain in perovskite thin films through charge-transport layers.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
23 Mar 2020
Historique:
received: 10 12 2019
accepted: 01 03 2020
entrez: 7 4 2020
pubmed: 7 4 2020
medline: 7 4 2020
Statut: epublish

Résumé

Thermally-induced tensile strain that remains in perovskite films following annealing results in increased ion migration and is a known factor in the instability of these materials. Previously-reported strain regulation methods for perovskite solar cells (PSCs) have utilized substrates with high thermal expansion coefficients that limits the processing temperature of perovskites and compromises power conversion efficiency. Here we compensate residual tensile strain by introducing an external compressive strain from the hole-transport layer. By using a hole-transport layer with high thermal expansion coefficient, we compensate the tensile strain in PSCs by elevating the processing temperature of hole-transport layer. We find that compressive strain increases the activation energy for ion migration, improving the stability of perovskite films. We achieve an efficiency of 16.4% for compressively-strained PSCs; and these retain 96% of their initial efficiencies after heating at 85 °C for 1000 hours-the most stable wide-bandgap perovskites (above 1.75 eV) reported so far.

Identifiants

pubmed: 32251277
doi: 10.1038/s41467-020-15338-1
pii: 10.1038/s41467-020-15338-1
pmc: PMC7090003
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1514

Références

Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).
pubmed: 19366264 doi: 10.1021/ja809598r
National Renewable Energy Laboratory. Best Research-cell Efficiencies https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20190923.pdf (2019).
Jiang, Q. et al. Surface passivation of perovskite film for efficient solar cells. Nat. Photon. 13, 460–466 (2019).
doi: 10.1038/s41566-019-0398-2
Grätzel, M. The light and shade of perovskite solar cells. Nat. Mater. 13, 838–842 (2014).
pubmed: 25141800 doi: 10.1038/nmat4065
Wang, L. et al. A Eu
pubmed: 30655439 doi: 10.1126/science.aau5701
Wong-Stringer, M. et al. High-performance multilayer encapsulation for perovskite photovoltaics. Adv. Energy Mater. 8, 1801234 (2018).
doi: 10.1002/aenm.201801234
Cheacharoen, R. et al. Design and understanding of encapsulated perovskite solar cells to withstand temperature cycling. Energy Environ. Sci. 11, 144–150 (2018).
doi: 10.1039/C7EE02564E
Bella, F. et al. Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers. Science 354, 203–206 (2016).
pubmed: 27708051 doi: 10.1126/science.aah4046
Boyd, C. C., Cheacharoen, R., Leijtens, T. & McGehee, M. D. Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem. Rev. 119, 3418–3451 (2019).
pubmed: 30444609 doi: 10.1021/acs.chemrev.8b00336
Steele, J. A. et al. Thermal unequilibrium of strained black CsPbI
pubmed: 31346140 doi: 10.1126/science.aax3878
Zhao, J. et al. Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells. Sci. Adv. 3, eaao5616 (2017).
pubmed: 29159287 pmcid: 5694650 doi: 10.1126/sciadv.aao5616
Rolston, N. et al. Engineering stress in perovskite solar cells to improve stability. Adv. Energy Mater. 8, 1802139 (2018).
doi: 10.1002/aenm.201802139
Zhu, C. et al. Strain engineering in perovskite solar cells and its impacts on carrier dynamics. Nat. Commun. 10, 815 (2019).
pubmed: 30778061 pmcid: 6379394 doi: 10.1038/s41467-019-08507-4
Zhang, H. et al. Toward all room-temprerature, solution-processed, high-performance planar perovskite solar cells: a new scheme of pyrideine-promoted perovskite formation. Adv. Mater. 29, 1604695 (2017).
doi: 10.1002/adma.201604695
Ge, C. et al. Ultralow thermal conductivity and ultrahigh thermal expansion of single-crystal organic–inorganic hybrid perovskite CH
doi: 10.1021/acs.jpcc.8b05919
Keshavarz, M. et al. Tracking structural phase transitions in lead-halide perovskites by means of thermal expansion. Adv. Mater. 31, 1900521 (2019).
doi: 10.1002/adma.201900521
Jacobsson, T. J., Schwan, L. J., Ottosson, M., Hagfeldt, A. & Edvinsson, T. Determination of thermal expansion coefficients and locating the temperature-induced phase transition in methylammonium lead perovskites using X-ray diffraction. Inorg. Chem. 54, 10678–10685 (2015).
pubmed: 26457861 doi: 10.1021/acs.inorgchem.5b01481 pmcid: 26457861
Burwig, T., Fränzel, W. & Pistor, P. Crystal phases and thermal stability of co-evaporated CsPbX
pubmed: 30084256 doi: 10.1021/acs.jpclett.8b02059 pmcid: 30084256
Wang, P. et al. Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells. Nat. Commun. 9, 2225 (2018).
pubmed: 29884815 pmcid: 5993712 doi: 10.1038/s41467-018-04636-4
Wang, Y. et al. Thermodynamically stabilized β-CsPbI
pubmed: 31395783 doi: 10.1126/science.aav8680
Liu, M. et al. Lattice anchoring stabilizes solution-processed semiconductors. Nature 570, 96–101 (2019).
pubmed: 31118515 doi: 10.1038/s41586-019-1239-7
Liu, C. et al. Structurally reconstructed CsPbI
doi: 10.1002/aenm.201803572
Chen, W. et al. Precise control of crystal growth for highly efficient CsPbI
doi: 10.1016/j.joule.2018.10.011
Wang, K. et al. All-inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15%. Nat. Commun. 9, 4544 (2018).
pubmed: 30382108 pmcid: 6208436 doi: 10.1038/s41467-018-06915-6
Zeng, Z. et al. In situ grain boundary functionalization for stable and efficient inorganic CsPbI
doi: 10.1002/aenm.201801050
Tian, J. et al. Dual interfacial design for efficient CsPbI
doi: 10.1002/adma.201901152
Swarnkar, A. et al. Quantum dot–induced phase stabilization of α-CsPbI
pubmed: 27846497 doi: 10.1126/science.aag2700
Xue, J. et al. Crystalline liquid-like behavior: surface-induced secondary grain growth of photovoltaic perovskite thin film. J. Am. Chem. Soc. 141, 13948–13953 (2019).
pubmed: 31403287 doi: 10.1021/jacs.9b06940
Hou, Y. et al. A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells. Science 358, 1192–1197 (2017).
pubmed: 29123021 doi: 10.1126/science.aao5561
Zhang, M., Guo, X., Ma, W., Ade, H. & Hou, J. A polythiophene derivative with superior properties for practical application in polymer solar Cells. Adv. Mater. 26, 5880–5885 (2014).
pubmed: 25044098 doi: 10.1002/adma.201401494
Shen, X., Duzhko, V. V. & Russell, T. P. A Study on the correlation between structure and hole transport in semi-crystalline regioregular P3HT. Adv. Energy Mater. 3, 263–270 (2013).
doi: 10.1002/aenm.201200509
Wang, T., Pearson, A. J., Lidzey, D. G. & Jones, R. A. L. Evolution of structure, optoelectronic properties, and device performance of polythiophene: fullerene solar cells during thermal annealing. Adv. Funct. Mater. 21, 1383–1390 (2011).
doi: 10.1002/adfm.201002300
Joshi, S. et al. Bimodal temperature behavior of structure and mobility in high molecular weight P3HT thin films. Macromolecules 42, 4651–4660 (2009).
doi: 10.1021/ma900021w
Wu, T. et al. Efficient defect passivation for perovskite solar cells by controlling the electron density distribution of donor-π-acceptor molecules. Adv. Energy Mater. 9, 1803766 (2019).
doi: 10.1002/aenm.201803766
Lin, Y. et al. π-conjugated Lewis base: efficient trap-passivation and charge-extraction for hybrid perovskite solar cells. Adv. Mater. 29, 1604545 (2017).
doi: 10.1002/adma.201604545
Zheng, X. et al. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat. Energy 2, 17102 (2017).
doi: 10.1038/nenergy.2017.102
Saidaminov, M. I. et al. Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air. Nat. Energy 3, 648–654 (2018).
doi: 10.1038/s41560-018-0192-2
Tan, H. et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 355, 722–726 (2017).
pubmed: 28154242 doi: 10.1126/science.aai9081 pmcid: 28154242
Ferdani, D. W. et al. Partial cation substitution reduces iodide ion transport in lead iodide perovskite solar cells. Energy Environ. Sci. 12, 2264–2272 (2019).
doi: 10.1039/C9EE00476A
Eames, C. et al. Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun. 6, 7497 (2015).
pubmed: 26105623 pmcid: 4491179 doi: 10.1038/ncomms8497
Chiang, C.-H. & Wu, C.-G. A method for the preparation of highly oriented MAPbI
pubmed: 30280561 doi: 10.1021/acsnano.8b05731
Wu, C.-G. et al. High efficiency stable inverted perovskite solar cells without current hysteresis. Energy Environ. Sci. 8, 2725–2733 (2015).
doi: 10.1039/C5EE00645G
Yang, Y. et al. Top and bottom surfaces limit carrier lifetime in lead iodide perovskite films. Nat. Energy 2, 16207 (2017).
doi: 10.1038/nenergy.2016.207
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
doi: 10.1103/PhysRevB.54.11169
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
pubmed: 10062328 doi: 10.1103/PhysRevLett.77.3865
Press, W. H. Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, Cambridge, 2007).

Auteurs

Ding-Jiang Xue (DJ)

Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 1A4, Canada.
Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.

Yi Hou (Y)

Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 1A4, Canada.

Shun-Chang Liu (SC)

Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.

Mingyang Wei (M)

Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 1A4, Canada.

Bin Chen (B)

Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 1A4, Canada.

Ziru Huang (Z)

Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 1A4, Canada.

Zongbao Li (Z)

Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.
National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, 450002, Zhengzhou, China.

Bin Sun (B)

Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 1A4, Canada.

Andrew H Proppe (AH)

Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 1A4, Canada.
Department of Chemistry, University of Toronto, Toronto, ON, M5S 3G4, Canada.

Yitong Dong (Y)

Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 1A4, Canada.

Makhsud I Saidaminov (MI)

Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 1A4, Canada.

Shana O Kelley (SO)

Department of Chemistry, University of Toronto, Toronto, ON, M5S 3G4, Canada.
Leslie Dan Faculty of Pharmacy, Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, M5S 3M2, Canada.

Jin-Song Hu (JS)

Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.

Edward H Sargent (EH)

Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 1A4, Canada. ted.sargent@utoronto.ca.

Classifications MeSH