Unravelling the mechanism of pressure induced polyamorphic transition in an inorganic molecular glass.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
23 Mar 2020
Historique:
received: 12 11 2019
accepted: 03 03 2020
entrez: 7 4 2020
pubmed: 7 4 2020
medline: 7 4 2020
Statut: epublish

Résumé

The atomic structure of a germanium doped phosphorous selenide glass of composition Ge

Identifiants

pubmed: 32251311
doi: 10.1038/s41598-020-61997-x
pii: 10.1038/s41598-020-61997-x
pmc: PMC7089991
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

5208

Subventions

Organisme : National Science Foundation
ID : EAR 10-43050
Organisme : National Science Foundation
ID : DMR-1855176

Références

McMillan, P. F. et al. Polyamorphism and liquid-liquid phase transitions: challenges for experiment and theory. J. Physics: Condensed Matter 19, 415101 (2007).
Mishima, O. Polyamorphism in water. Proc. Jpn. Acad. Ser. B. Phys. Biol. Sci. 86(3), 165–175 (2010).
doi: 10.2183/pjab.86.165
Klotz, S. et al. Nature of the polyamorphic transition in ice under pressure. Phys. Rev. Lett. 94, 025506 (2005).
doi: 10.1103/PhysRevLett.94.025506
Debenedetti, P. G. & Stanley, H. E. Supercooled and glassy water. Physics Today 56(6), 40 (2003).
doi: 10.1063/1.1595053
Sen, S., Gaudio, S., Aitken, B. G. & Lesher, C. E. Observation of a pressure-induced first-order polyamorphic transition in a chalcogenide glass at ambient temperature. Phys. Rev. Lett. 97, 025504 (2006).
doi: 10.1103/PhysRevLett.97.025504
Soyer-Uzun, S. et al. In situ high-pressure x-ray diffraction study of densification of a molecular chalcogenide glass. J. Phys. and Chem. of Solids 69, 2336–2340 (2008).
doi: 10.1016/j.jpcs.2008.04.004
Kalkan, B. et al. Hysteretically reversible phase transition in a molecular glass. J. Chem. Phys. 137, 224503 (2012).
doi: 10.1063/1.4769794
Gjersing, E. L., Sen, S. & Aitken, B. G. Molecular dynamics in supercooled P-Se liquids near the glass transition: results from
doi: 10.1021/jp111641f
Verrall, D. J. & Elliot, S. R. Experimental evidence for an inorganic molecular glass. Phys. Rev. Lett. 61, 974–977 (1988).
doi: 10.1103/PhysRevLett.61.974
Bytchkov, A., Fayon, F., Massiot, D., Hennet, L. & Price, D. L.
doi: 10.1039/b919118f
Soyer-Uzun, S., Sen, S. & Aitken, B. G. Network vs molecular structural characteristics of Ge-doped arsenic sulfide glasses: a combined neutron/x-ray diffraction, extended x-ray absorption fine structure, and raman spectroscopic study. J. Phys. Chem. C 113, 6231–6242 (2009).
doi: 10.1021/jp810446g
Wright, A. C. et al. Neutron studies of an inorganic plastic glass. J. Non-Cryst. Solids 357, 2502–2510 (2011).
doi: 10.1016/j.jnoncrysol.2010.12.054
Salmon, P. S., Martin, R. A., Mason, P. E. & Cuello, G. J. Topological versus chemical ordering in network glasses at intermediate and external length scales. Nature 435, 75–78 (2005).
doi: 10.1038/nature03475
Bytchkov, A. et al. Intermediate- and short-range order in phosphorus-selenium glasses. Phys. Rev. B 83, 144201 (2011).
doi: 10.1103/PhysRevB.83.144201
Kalkan, B., Benmore, C. J., Aitken, B. G., Sen, S. & Clark, S. M. A comparative study of the atomic structures of Ge-doped As4S3 and P4Se3 molecular glasses. J. Non-Cryst. Solids 514, 83–89 (2019).
doi: 10.1016/j.jnoncrysol.2019.03.043
Brazhkin, V. V. et al. AsS melt under pressure: One substance, three liquids. Phys. Rev. Lett. 100, 145701 (2008).
doi: 10.1103/PhysRevLett.100.145701
Brazhkin, V. V., Kanzaki, M., Funakoshi, K. & Katayama, Y. Viscosity behavior spanning four orders of magnitude in As-S melts under high pressure. Phys. Rev. Lett. 102, 115901 (2009).
doi: 10.1103/PhysRevLett.102.115901
Zhang, C., Hu, L., Yue, Y. & Mauro, J. C. Fragile-to-strong transition in metallic glass-forming liquids. J. Chem. Phys. 133, 014508 (2010).
doi: 10.1063/1.3457670
Kunz, M. et al. A beamline for high-pressure studies at the Advanced Light Source with a superconducting bending magnet as the source. J. Synchrotron Radiat. 12, 650 (2005).
doi: 10.1107/S0909049505020959
Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N. & Hausermann, D. Two-dimensional detector software: from real detector to idealized image or two-theta scan. High Pressure Research 14, 235 (1996).
doi: 10.1080/08957959608201408
Kalkan, B., Dias, R. P., Yoo, C.-S., Clark, S. M. & Sen, S. Polyamorphism and pressure-induced metallization at the rigidity percolation threshold in densified GeSe
doi: 10.1021/jp4108602
Shen, G. et al. Melting Studies of Indium: Determination of Structure and Density of Melts at High Pressures and High Temperatures. J. Phys. Cond. Matt. 14, 10533–10540 (2002).
doi: 10.1088/0953-8984/14/44/328
Soper, A. K. Partial structure factors from disordered materials diffraction data: An approach using empirical potential structure refinement. Phys. Rev. B 72, 104204/1–104204/12 (2005).
doi: 10.1103/PhysRevB.72.104204
Zaug, J. M., Soper, A. K. & Clark, S. M. Pressure-dependent structures of amorphous red phosphorus and the origin of the first sharp diffraction peaks. Nature Mat. 7, 890–899 (2008).
doi: 10.1038/nmat2290

Auteurs

Bora Kalkan (B)

Earth and Planetary Sciences Department, University of California, Santa Cruz, CA, 95064, USA. bkalkan@lbl.gov.tr.
Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA. bkalkan@lbl.gov.tr.

Gokce Okay (G)

Department of Physics Engineering, Hacettepe University, Ankara, 06800, Beytepe, Turkey.

Bruce G Aitken (BG)

Glass Research Division, Corning Inc., Corning, New York, 14831, USA.

Simon M Clark (SM)

Department of Earth and Environmental Sciences, Macquarie University, North Ryde, NSW, Australia.
School of Engineering, Macquarie University, North Ryde, NSW, 2109, Australia.

Sabyasachi Sen (S)

Department of Materials Science and Engineering, University of California-Davis, Davis, California, 95616, USA.

Classifications MeSH