Plant-based production of highly potent anti-HIV antibodies with engineered posttranslational modifications.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
10 04 2020
10 04 2020
Historique:
received:
05
07
2019
accepted:
17
03
2020
entrez:
12
4
2020
pubmed:
12
4
2020
medline:
15
12
2020
Statut:
epublish
Résumé
Broadly neutralising antibodies (bNAbs) against human immunodeficiency virus type 1 (HIV-1), such as CAP256-VRC26 are being developed for HIV prevention and treatment. These Abs carry a unique but crucial post-translational modification (PTM), namely O-sulfated tyrosine in the heavy chain complementarity determining region (CDR) H3 loop. Several studies have demonstrated that plants are suitable hosts for the generation of highly active anti-HIV-1 antibodies with the potential to engineer PTMs. Here we report the expression and characterisation of CAP256-VRC26 bNAbs with posttranslational modifications (PTM). Two variants, CAP256-VRC26 (08 and 09) were expressed in glycoengineered Nicotiana benthamiana plants. By in planta co-expression of tyrosyl protein sulfotransferase 1, we installed O-sulfated tyrosine in CDR H3 of both bNAbs. These exhibited similar structural folding to the mammalian cell produced bNAbs, but non-sulfated versions showed loss of neutralisation breadth and potency. In contrast, tyrosine sulfated versions displayed equivalent neutralising activity to mammalian produced antibodies retaining exceptional potency against some subtype C viruses. Together, the data demonstrate the enormous potential of plant-based systems for multiple posttranslational engineering and production of fully active bNAbs for application in passive immunisation or as an alternative for current HIV/AIDS antiretroviral therapy regimens.
Identifiants
pubmed: 32277089
doi: 10.1038/s41598-020-63052-1
pii: 10.1038/s41598-020-63052-1
pmc: PMC7148297
doi:
Substances chimiques
Antibodies, Neutralizing
0
HIV Antibodies
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
6201Références
UNAIDS. Fact sheet - Latest statistics on the status of the AIDS epidemic | UNAIDS. Available at: http://www.unaids.org/en/resources/fact-sheet . (Accessed: 9th May 2018) (2018).
Klein, F. et al. HIV therapy by a combination of broadly neutralizing antibodies in humanized mice. Nature 492, 118–22 (2012).
doi: 10.1038/nature11604
Doria-Rose, N. A. et al. Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies. Nature 509, 55–62 (2014).
doi: 10.1038/nature13036
McLellan, J. S. et al. Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PG9. Nature 480, 336–343 (2011).
Choe, H. et al. Tyrosine Sulfation of Human Antibodies Contributes to Recognition of the CCR5 Binding Region of HIV-1 gp120. Cell 114, 161–170 (2003).
doi: 10.1016/S0092-8674(03)00508-7
Lin, H., Du, J. & Jiang, H. Modifications to Regulate Protein Function. https://doi.org/10.1002/9780470048672.wecb467 (2008).
Rosenberg, Y. et al. Pharmacokinetics and Immunogenicity of Broadly Neutralizing HIV Monoclonal Antibodies in Macaques. PLoS One 10, 1–15 (2015).
Moore, K. L. Protein tyrosine sulfation: a critical posttranslation modification in plants and animals. Proc. Natl. Acad. Sci. USA 106, 14741–14742 (2009).
doi: 10.1073/pnas.0908376106
Stone, M. J., Chuang, S., Hou, X., Shoham, M. & Zhu, J. Z. Tyrosine sulfation: an increasingly recognised post-translational modification of secreted proteins. N. Biotechnol. 25, 299–317 (2009).
doi: 10.1016/j.nbt.2009.03.011
Nandi, S. et al. Techno-economic analysis of a transient plant-based platform for monoclonal antibody production. MAbs 8, 1456–1466 (2016).
doi: 10.1080/19420862.2016.1227901
Schähs, M. et al. Production of a monoclonal antibody in plants with a humanized N-glycosylation pattern. Plant Biotechnol. J. 5, 657–663 (2007).
doi: 10.1111/j.1467-7652.2007.00273.x
Castilho, A. et al. An oligosaccharyltransferase from Leishmania major increases the N-glycan occupancy on recombinant glycoproteins produced in Nicotiana benthamiana. Plant Biotechnol. J. 16, 1700–1709 (2018).
doi: 10.1111/pbi.12906
Teh, A. Y. H., Maresch, D., Klein, K. & Ma, J. K. C. Characterization of VRC01, a potent and broadly neutralizing anti-HIV mAb, produced in transiently and stably transformed tobacco. Plant Biotechnol. J. 12, 300–311 (2014).
doi: 10.1111/pbi.12137
Loos, A. et al. Glycan modulation and sulfoengineering of anti–HIV-1 monoclonal antibody PG9 in plants. Proc. Natl. Acad. Sci. 201509090 10.1073/pnas.1509090112 (2015).
Forthal, D. N. et al. Activity of Monoclonal Antibody 2G12 Binding and Cell-Mediated Anti-HIV Receptor γ Fc-Glycosylation Influences Fc Fc-Glycosylation Influences Fcg Receptor Binding and Cell-Mediated Anti-HIV Activity of Monoclonal Antibody 2G12. J Immunol Mater. Suppl. DC1.html J. Immunol. Univ. Manitoba 185, 6876–6882 (2010).
Moldt, B. et al. A Nonfucosylated Variant of the anti-HIV-1 Monoclonal Antibody b12 Has Enhanced Fc RIIIa-Mediated Antiviral Activity In Vitro but Does Not Improve Protection against Mucosal SHIV Challenge in Macaques. J. Virol. 86, 6189–6196 (2012).
doi: 10.1128/JVI.00491-12
Stelter, S. et al. Engineering the interactions between a plant‐produced HIV antibody and human Fc receptors. Plant Biotechnol. J. 1–13 https://doi.org/10.1111/pbi.13207 (2019).
Montero-Morales, L. & Steinkellner, H. Advanced Plant-Based Glycan Engineering. Front. Bioeng. Biotechnol. 6, 1–8 (2018).
doi: 10.3389/fbioe.2018.00081
Strasser, R. et al. Generation of glyco-engineered Nicotiana benthamiana for the production of monoclonal antibodies with a homogeneous human-like N-glycan structure. Plant Biotechnol. J. 6, 392–402 (2008).
doi: 10.1111/j.1467-7652.2008.00330.x
Pejchal, R. et al. Structure and function of broadly reactive antibody PG16 reveal an H3 subdomain that mediates potent neutralization of HIV-1 Departments of a Molecular Biology and. https://doi.org/10.1073/pnas.1004600107 .
Lewis, G. K. Qualitative and quantitative variables that affect the potency of Fc- mediated effector function in vitro and in vivo: considerations for passive immunization using non-neutralizing antibodies. Curr. HIV Res. 11, 354–64 (2013).
doi: 10.2174/1570162X113116660060
Baum, L. L. et al. HIV-1 gp120-specific antibody-dependent cell-mediated cytotoxicity correlates with rate of disease progression. J. Immunol. 157, 2168–73 (1996).
pubmed: 8757343
Shields, R. L. et al. Lack of Fucose on Human IgG1 N -Linked Oligosaccharide Improves Binding to Human FcγRIII and Antibody-dependent Cellular Toxicity. J. Biol. Chem. 277, 26733–26740 (2002).
doi: 10.1074/jbc.M202069200
Doi, E. & Jirgensons, B. Circular dichroism studies on the acid denaturation of gamma-immunoglobulin G and its fragments. Biochemistry 9, 1066–73 (1970).
doi: 10.1021/bi00807a003
Parker, C. E., Mocanu, V., Mocanu, M., Dicheva, N. & Warren, M. R. Mass Spectrometry for Post-Translational Modifications. Neuroproteomics (CRC Press/Taylor & Francis, 2010).
Hiatt, A. et al. Glycan variants of a respiratory syncytial virus antibody with enhanced effector function and in vivo efficacy. Proc. Natl. Acad. Sci. USA 111, 5992–7 (2014).
doi: 10.1073/pnas.1402458111
Pettitt, J. et al. Therapeutic Intervention of Ebola Virus Infection in Rhesus Macaques with the MB-003 Monoclonal Antibody Cocktail. Sci. Transl. Med. 5, 1–6 (2013).
doi: 10.1126/scitranslmed.3006608
Bendandi, M. et al. Rapid, high-yield production in plants of individualized idiotype vaccines for non-Hodgkin’s lymphoma. Ann. Oncol. 21, 2420–2427 (2010).
doi: 10.1093/annonc/mdq256
Doran, P. M. Foreign protein degradation and instability in plants and plant tissue cultures. Trends Biotechnol. 24, 426–432 (2006).
doi: 10.1016/j.tibtech.2006.06.012
Benchabane, M. et al. Preventing unintended proteolysis in plant protein biofactories. Plant Biotechnol. J. 6, 633–648 (2008).
doi: 10.1111/j.1467-7652.2008.00344.x
M., S. et al. In planta engineering of viral RNA replicons: Efficient assembly by recombination of DNA modules delivered by Agrobacterium. J. Appl. Biol. 101, 6852–6857 (2004).
Zhang, J. et al. PEAKS DB: De Novo Sequencing Assisted Database Search for Sensitive and Accurate Peptide Identification. Mol. Cell. Proteomics 11, M111.010587–M111.010587 (2012).
doi: 10.1074/mcp.M111.010587
Montefiori, D. C. Evaluating neutralizing antibodies against HIV, SIV, and SHIV in luciferase reporter gene assays. Curr. Protoc. Immunol. Chapter 12(Unit 12), 11 (2005).
pubmed: 18432938