Comprehensive proteomic analysis of murine terminal erythroid differentiation.
Journal
Blood advances
ISSN: 2473-9537
Titre abrégé: Blood Adv
Pays: United States
ID NLM: 101698425
Informations de publication
Date de publication:
14 04 2020
14 04 2020
Historique:
received:
11
02
2020
accepted:
04
03
2020
entrez:
14
4
2020
pubmed:
14
4
2020
medline:
15
5
2021
Statut:
ppublish
Résumé
Murine-based cellular models have provided and continue to provide many useful insights into the fundamental mechanisms of erythropoiesis, as well as insights into the pathophysiology of inherited and acquired red cell disorders. Although detailed information on many aspects of these cell models is available, comprehensive proteomic data are lacking. This is a critical knowledge gap, as proteins are effectors of most biologic processes. To address this critical unmet need, proteomes of the murine cell lines Friend erythroleukemia (MEL), GATA1 erythroid (G1ER), and embryonic stem cell-derived erythroid progenitor (MEDEP) and proteomes of cultured murine marrow-derived erythroblasts at different stages of terminal erythroid differentiation were analyzed. The proteomes of MEDEP cells and primary murine erythroid cells were most similar, whereas those of MEL and G1ER cells were more distantly related. We demonstrated that the overall cellular content of histones does not decrease during terminal differentiation, despite strong chromatin condensation. Comparison of murine and human proteomes throughout terminal erythroid differentiation revealed that many noted transcriptomic changes were significantly dampened at the proteome level, especially at the end of the terminal differentiation process. Analysis of the early events associated with induction of terminal differentiation in MEDEP cells revealed divergent alterations in associated transcriptomes and proteomes. These proteomic data are powerful and valuable tools for the study of fundamental mechanisms of normal and disordered erythropoiesis and will be of broad interest to a wide range of investigators for making the appropriate choice of various cell lines to study inherited and acquired diseases of the erythrocyte.
Identifiants
pubmed: 32282884
pii: S2473-9529(20)31408-7
doi: 10.1182/bloodadvances.2020001652
pmc: PMC7160260
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1464-1477Subventions
Organisme : NIDDK NIH HHS
ID : P01 DK032094
Pays : United States
Organisme : NCATS NIH HHS
ID : UL1 TR001863
Pays : United States
Informations de copyright
© 2020 by The American Society of Hematology.
Références
Cell Metab. 2014 Dec 2;20(6):1076-87
pubmed: 25470552
PLoS One. 2008 Feb 06;3(2):e1544
pubmed: 18253492
J Proteomics. 2014 Sep 23;109:322-31
pubmed: 25063446
Proc Natl Acad Sci U S A. 1971 Feb;68(2):378-82
pubmed: 5277089
Mol Cell Proteomics. 2014 Dec;13(12):3497-506
pubmed: 25225357
Blood. 2011 Oct 20;118(16):e128-38
pubmed: 21860024
Trends Genet. 2014 Jan;30(1):1-9
pubmed: 24290192
Mol Cell Biol. 2015 Oct 26;36(2):238-50
pubmed: 26503787
Nature. 2011 May 19;473(7347):337-42
pubmed: 21593866
Blood. 2013 May 30;121(22):4575-85
pubmed: 23610375
Mol Syst Biol. 2012;8:611
pubmed: 22968445
IUBMB Life. 2020 Jan;72(1):89-105
pubmed: 31769197
Cell Rep. 2017 Jun 20;19(12):2490-2502
pubmed: 28636938
Cell Rep. 2019 Jun 11;27(11):3228-3240.e7
pubmed: 31189107
Blood. 2018 Sep 6;132(10):987-998
pubmed: 29991557
Haematologica. 2019 Oct 3;:
pubmed: 31582556
J Biol Chem. 2017 Sep 29;292(39):16284-16299
pubmed: 28808058
Nat Biotechnol. 2016 May;34(5):525-7
pubmed: 27043002
Genes Dev. 2015 Dec 15;29(24):2603-16
pubmed: 26680303
Mol Cell Biol. 1997 Mar;17(3):1642-51
pubmed: 9032291
Cell Rep. 2019 Sep 10;28(11):2996-3009.e7
pubmed: 31509757
Nucleic Acids Res. 2017 Aug 21;45(14):8255-8268
pubmed: 28520978
Nat Immunol. 2017 May;18(5):583-593
pubmed: 28263321
Cell Rep. 2017 Jun 27;19(13):2836-2852
pubmed: 28658629
Blood. 2017 Feb 2;129(5):619-629
pubmed: 27899360
Proc Natl Acad Sci U S A. 2011 Aug 9;108(32):13141-6
pubmed: 21788492
Nat Methods. 2014 Mar;11(3):319-24
pubmed: 24487582
J Proteome Res. 2017 Aug 4;16(8):2752-2761
pubmed: 28689405
J Proteome Res. 2019 Jan 4;18(1):217-224
pubmed: 30336047
J Proteome Res. 2019 Nov 1;18(11):4020-4026
pubmed: 31547658
Cancer Res. 1977 Feb;37(2):440-4
pubmed: 264411
PLoS One. 2015 Aug 19;10(8):e0135896
pubmed: 26287972
Cell Rep. 2016 Aug 2;16(5):1470-1484
pubmed: 27452463
Blood. 2011 Dec 8;118(24):6258-68
pubmed: 21998215
Blood. 2014 May 29;123(22):3466-77
pubmed: 24637361
Blood Adv. 2018 Oct 23;2(20):2646-2657
pubmed: 30327373
BMC Bioinformatics. 2012;13 Suppl 16:S12
pubmed: 23176165
Dev Cell. 2016 Mar 7;36(5):498-510
pubmed: 26954545
Proc Natl Acad Sci U S A. 2014 Mar 18;111(11):4103-8
pubmed: 24591581
Blood. 2004 Nov 15;104(10):3136-47
pubmed: 15297311
Mol Cell Proteomics. 2014 Sep;13(9):2513-26
pubmed: 24942700
Nat Commun. 2017 Nov 13;8(1):1469
pubmed: 29133944
Nat Methods. 2016 Sep;13(9):731-40
pubmed: 27348712
Blood. 2018 Jun 7;131(23):2568-2580
pubmed: 29615406
Dev Cell. 2014 Sep 29;30(6):688-700
pubmed: 25241935
Blood. 2014 Jan 9;123(2):261-70
pubmed: 24255919
Cell Rep. 2019 Nov 19;29(8):2505-2519.e4
pubmed: 31747616
J Exp Med. 1976 Feb 1;143(2):305-15
pubmed: 1249519
Blood. 2003 Nov 1;102(9):3136-46
pubmed: 12869505
Blood. 2014 Sep 18;124(12):1931-40
pubmed: 25092175
Cancer Med. 2019 Mar;8(3):1169-1174
pubmed: 30701702