The WNK signaling pathway and salt-sensitive hypertension.


Journal

Hypertension research : official journal of the Japanese Society of Hypertension
ISSN: 1348-4214
Titre abrégé: Hypertens Res
Pays: England
ID NLM: 9307690

Informations de publication

Date de publication:
08 2020
Historique:
received: 02 03 2020
accepted: 11 03 2020
revised: 11 03 2020
pubmed: 15 4 2020
medline: 17 8 2021
entrez: 15 4 2020
Statut: ppublish

Résumé

The distal nephron of the kidney has a central role in sodium and fluid homeostasis, and disruption of this homeostasis due to mutations of with-no-lysine kinase 1 (WNK1), WNK4, Kelch-like 3 (KLHL3), or Cullin 3 (CUL3) causes pseudohypoaldosteronism type II (PHAII), an inherited hypertensive disease. WNK1 and WNK4 activate the NaCl cotransporter (NCC) at the distal convoluted tubule through oxidative stress-responsive gene 1 (OSR1)/Ste20-related proline-alanine-rich kinase (SPAK), constituting the WNK-OSR1/SPAK-NCC phosphorylation cascade. The level of WNK protein is regulated through degradation by the CUL3-KLHL3 E3 ligase complex. In the normal state, the activity of WNK signaling in the kidney is physiologically regulated by sodium intake to maintain sodium homeostasis in the body. In patients with PHAII, however, because of the defective degradation of WNK kinases, NCC is constitutively active and not properly suppressed by a high salt diet, leading to abnormally increased salt reabsorption and salt-sensitive hypertension. Importantly, recent studies have demonstrated that potassium intake, insulin, and TNFα are also physiological regulators of WNK signaling, suggesting that they contribute to the salt-sensitive hypertension associated with a low potassium diet, metabolic syndrome, and chronic kidney disease, respectively. Moreover, emerging evidence suggests that WNK signaling also has some unique roles in metabolic, cardiovascular, and immunological organs. Here, we review the recent literature and discuss the molecular mechanisms of the WNK signaling pathway and its potential as a therapeutic target.

Identifiants

pubmed: 32286498
doi: 10.1038/s41440-020-0437-x
pii: 10.1038/s41440-020-0437-x
doi:

Substances chimiques

Sodium Chloride, Dietary 0

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

733-743

Références

Palmer LG, Schnermann J. Integrated control of Na transport along the nephron. Clin J Am Soc Nephrol. 2015;10:676–87. https://doi.org/10.2215/CJN.12391213 .
doi: 10.2215/CJN.12391213 pubmed: 25098598
Simon DB, Nelson-Williams C, Johnson Bia M, Ellison D, Karet FE, Morey Molina A, et al. Gitelman’s variant of Barter’s syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazide-sensitive Na–Cl cotransporter. Nat Genet. 1996;12:24–30. https://doi.org/10.1038/ng0196-24 .
doi: 10.1038/ng0196-24 pubmed: 8528245
Gordon RD. Syndrome of hypertension and hyperkalemia with normal glomerular filtration rate. Hypertension. 1986;8:93–102. https://doi.org/10.1161/01.HYP.8.2.93 .
doi: 10.1161/01.HYP.8.2.93 pubmed: 3002982
Mayan H, Attar-Herzberg D, Shaharabany M, Holtzman EJ, Farfel Z. Increased urinary Na-Cl cotransporter protein in familial hyperkalaemia and hypertension. Nephrol Dial Transpl. 2007;23:492–6. https://doi.org/10.1093/ndt/gfm641 .
doi: 10.1093/ndt/gfm641
Wilson FH, Disse-Nicodème S, Choate KA, Ishikawa K, Nelson-Williams C, Desitter I, et al. Human hypertension caused by mutations in WNK kinases. Science. 2001;293:1107–12. https://doi.org/10.1126/science.1062844 .
doi: 10.1126/science.1062844 pubmed: 11498583
Boyden LM, Choi M, Choate KA, Nelson-Williams CJ, Farhi A, Toka HR, et al. Mutations in kelch-like 3 and cullin 3 cause hypertension and electrolyte abnormalities. Nature. 2012;482:98–102. https://doi.org/10.1038/nature10814 .
doi: 10.1038/nature10814 pubmed: 22266938 pmcid: 3278668
Louis-Dit-Picard H, Barc J, Trujillano D, Miserey-Lenkei S, Bouatia-Naji N, Pylypenko O, et al. KLHL3 mutations cause familial hyperkalemic hypertension by impairing ion transport in the distal nephron. Nat Genet. 2012;44:456–60. https://doi.org/10.1038/ng.2218 .
doi: 10.1038/ng.2218 pubmed: 22406640
Xu B, English JM, Wilsbacher JL, Stippec S, Goldsmith EJ, Cobb MH. WNK1, a novel mammalian serine/threonine protein kinase lacking the catalytic lysine in subdomain II. J Biol Chem. 2000;275:16795–801. https://doi.org/10.1074/jbc.275.22.16795 .
doi: 10.1074/jbc.275.22.16795 pubmed: 10828064
Veríssimo F, Jordan P. WNK kinases, a novel protein kinase subfamily in multi-cellular organisms. Oncogene. 2001;20:5562–9. https://doi.org/10.1038/sj.onc.1204726 .
doi: 10.1038/sj.onc.1204726 pubmed: 11571656
Delaloy C, Lu J, Houot A-M, Disse-Nicodeme S, Gasc J-M, Corvol P, et al. Multiple promoters in the WNK1 gene: one controls expression of a kidney-specific kinase-defective isoform. Mol Cell Biol. 2003;23:9208–21. https://doi.org/10.1128/MCB.23.24.9208-9221.2003 .
doi: 10.1128/MCB.23.24.9208-9221.2003 pubmed: 14645531 pmcid: 309643
O’Reilly M. WNK1, a gene within a novel blood pressure control pathway, tissue-specifically generates radically different isoforms with and without a kinase domain. J Am Soc Nephrol. 2003;14:2447–56. https://doi.org/10.1097/01.ASN.0000089830.97681.3B .
doi: 10.1097/01.ASN.0000089830.97681.3B pubmed: 14514722
Vidal-Petiot E, Cheval L, Faugeroux J, Malard T, Doucet A, Jeunemaitre X. et al. A new methodology for quantification of alternatively spliced exons reveals a highly tissue-specific expression pattern of WNK1 isoforms. PLoS One. 2012;7:e37751. https://doi.org/10.1371/journal.pone.0037751 .
doi: 10.1371/journal.pone.0037751 pubmed: 22701532 pmcid: 3365125
Gong H, Tang Z, Yang Y, Sun L, Zhang W, Wang W, et al. A patient with pseudohypoaldosteronism type II caused by a novel mutation in WNK4 gene. Endocrine. 2008;33:230–4. https://doi.org/10.1007/s12020-008-9084-8 .
doi: 10.1007/s12020-008-9084-8 pubmed: 19016006
Golbang AP, Murthy M, Hamad A, Liu C-H, Cope G, Van’t Hoff W, et al. A new kindred with pseudohypoaldosteronism type II and a novel mutation (564D>H) in the acidic motif of the WNK4 gene. Hypertension. 2005;46:295–300. https://doi.org/10.1161/01.HYP.0000174326.96918.d6 .
doi: 10.1161/01.HYP.0000174326.96918.d6 pubmed: 15998707
Yang S-S, Morimoto T, Rai T, Chiga M, Sohara E, Ohno M, et al. Molecular pathogenesis of pseudohypoaldosteronism type II: generation and analysis of a Wnk4D561A/+ knockin mouse model. Cell Metab. 2007;5:331–44. https://doi.org/10.1016/j.cmet.2007.03.009 .
doi: 10.1016/j.cmet.2007.03.009 pubmed: 17488636
Wakabayashi M, Mori T, Isobe K, Sohara E, Susa K, Araki Y, et al. Impaired KLHL3-mediated ubiquitination of WNK4 causes human hypertension. Cell Rep. 2013;3:858–68. https://doi.org/10.1016/j.celrep.2013.02.024 .
doi: 10.1016/j.celrep.2013.02.024 pubmed: 23453970
Castañeda-Bueno M, Cervantes-Pérez LG, Vázquez N, Uribe N, Kantesaria S, Morla L, et al. Activation of the renal Na+:Cl- cotransporter by angiotensin II is a WNK4-dependent process. Proc Natl Acad Sci USA. 2012;109:7929–34. https://doi.org/10.1073/pnas.1200947109 .
doi: 10.1073/pnas.1200947109 pubmed: 22550170
Takahashi D, Mori T, Nomura N, Khan MZH, Araki Y, Zeniya M, et al. WNK4 is the major WNK positively regulating NCC in the mouse kidney. Biosci Rep. 2014;34. https://doi.org/10.1042/BSR20140047 .
Vidal-Petiot E, Elvira-Matelot E, Mutig K, Soukaseum C, Baudrie V, Wu S, et al. WNK1-related familial hyperkalemic hypertension results from an increased expression of L-WNK1 specifically in the distal nephron. Proc Natl Acad Sci USA. 2013;110:14366–71. https://doi.org/10.1073/pnas.1304230110 .
doi: 10.1073/pnas.1304230110 pubmed: 23940364
Liu Z, Xie J, Wu T, Truong T, Auchus RJ, Huang C-L. Downregulation of NCC and NKCC2 cotransporters by kidney-specific WNK1 revealed by gene disruption and transgenic mouse models. Hum Mol Genet. 2011;20:855–66. https://doi.org/10.1093/hmg/ddq525 .
doi: 10.1093/hmg/ddq525 pubmed: 21131289
Hadchouel J, Soukaseum C, Busst C, Zhou X-o, Baudrie V, Zurrer T, et al. Decreased ENaC expression compensates the increased NCC activity following inactivation of the kidney-specific isoform of WNK1 and prevents hypertension. Proc Natl Acad Sci USA. 2010;107:18109–14. https://doi.org/10.1073/pnas.1006128107 .
doi: 10.1073/pnas.1006128107 pubmed: 20921400
Boyd-Shiwarski CR, Shiwarski DJ, Roy A, Namboodiri HN, Nkashama LJ, Xie J, et al. Potassium-regulated distal tubule WNK bodies are kidney-specific WNK1 dependent. Mol Biol Cell. 2018;29:499–509. https://doi.org/10.1091/mbc.E17-08-0529 .
doi: 10.1091/mbc.E17-08-0529 pubmed: 29237822 pmcid: 6014176
Argaiz ER, Chavez-Canales M, Ostrosky-Frid M, Rodríguez-Gama A, Vázquez N, Gonzalez-Rodriguez X, et al. Kidney-specific WNK1 isoform (KS-WNK1) is a potent activator of WNK4 and NCC. Am J Physiol Ren Physiol. 2018;315:F734–45. https://doi.org/10.1152/ajprenal.00145.2018 .
doi: 10.1152/ajprenal.00145.2018
Moriguchi T, Urushiyama S, Hisamoto N, Iemura S, Uchida S, Natsume T, et al. WNK1 regulates phosphorylation of cation-chloride-coupled cotransporters via the STE20-related kinases, SPAK and OSR1. J Biol Chem. 2005;280:42685–93. https://doi.org/10.1074/jbc.M510042200 .
doi: 10.1074/jbc.M510042200 pubmed: 16263722
Vitari AC, Deak M, Morrice NA, Alessi DR. The WNK1 and WNK4 protein kinases that are mutated in Gordon’s hypertension syndrome phosphorylate and activate SPAK and OSR1 protein kinases. Biochem J. 2005;391:17–24. https://doi.org/10.1042/BJ20051180 .
doi: 10.1042/BJ20051180 pubmed: 16083423 pmcid: 1237134
Piechotta K, Lu J, Delpire E. Cation chloride cotransporters interact with the stress-related kinases Ste20-related proline-alanine-rich kinase (SPAK) and oxidative stress response 1 (OSR1). J Biol Chem. 2002;277:50812–9. https://doi.org/10.1074/jbc.M208108200 .
doi: 10.1074/jbc.M208108200 pubmed: 12386165
Vitari AC, Thastrup J, Rafiqi FH, Deak M, Morrice NA, Karlsson HKR, et al. Functional interactions of the SPAK/OSR1 kinases with their upstream activator WNK1 and downstream substrate NKCC1. Biochem J. 2006;397:223–31. https://doi.org/10.1042/BJ20060220 .
doi: 10.1042/BJ20060220 pubmed: 16669787 pmcid: 1479760
Zagórska A, Pozo-Guisado E, Boudeau J, Vitari AC, Rafiqi FH, Thastrup J, et al. Regulation of activity and localization of the WNK1 protein kinase by hyperosmotic stress. J Cell Biol. 2007;176:89–100. https://doi.org/10.1083/jcb.200605093 .
doi: 10.1083/jcb.200605093 pubmed: 17190791 pmcid: 2063630
Yang S-S, Lo Y-F, Wu C-C, Lin S-W, Yeh C-J, Chu P, et al. SPAK-knockout mice manifest Gitelman syndrome and impaired vasoconstriction. J Am Soc Nephrol. 2010;21:1868–77. https://doi.org/10.1681/ASN.2009121295 .
doi: 10.1681/ASN.2009121295 pubmed: 20813865 pmcid: 3014002
Pacheco-Alvarez D, Cristóbal PS, Meade P, Moreno E, Vazquez N, Muñoz E, et al. The Na+:Cl- cotransporter is activated and phosphorylated at the amino-terminal domain upon intracellular chloride depletion. J Biol Chem. 2006;281:28755–63. https://doi.org/10.1074/jbc.M603773200 .
doi: 10.1074/jbc.M603773200 pubmed: 16887815
Hossain Khan MZ, Sohara E, Ohta A, Chiga M, Inoue Y, Isobe K, et al. Phosphorylation of Na-Cl cotransporter by OSR1 and SPAK kinases regulates its ubiquitination. Biochem Biophys Res Commun. 2012;425:456–61. https://doi.org/10.1016/j.bbrc.2012.07.124 .
doi: 10.1016/j.bbrc.2012.07.124 pubmed: 22846565
Rafiqi FH, Zuber AM, Glover M, Richardson C, Fleming S, Jovanović S, et al. Role of the WNK-activated SPAK kinase in regulating blood pressure. EMBO Mol Med. 2010;2:63–75. https://doi.org/10.1002/emmm.200900058 .
doi: 10.1002/emmm.200900058 pubmed: 20091762 pmcid: 3377268
Chiga M, Rafiqi FH, Alessi DR, Sohara E, Ohta A, Rai T, et al. Phenotypes of pseudohypoaldosteronism type II caused by the WNK4 D561A missense mutation are dependent on the WNK-OSR1/SPAK kinase cascade. J Cell Sci. 2011;124:1391–5. https://doi.org/10.1242/jcs.084111 .
doi: 10.1242/jcs.084111 pubmed: 21486947
Lai F, Orelli BJ, Till BG, Godley LA, Fernald AA, Pamintuan L, et al. Molecular characterization of KLHL3, a human homologue of the Drosophila kelch gene. Genomics. 2000;66:65–75. https://doi.org/10.1006/geno.2000.6181 .
doi: 10.1006/geno.2000.6181 pubmed: 10843806
Ohta A, Schumacher F-R, Mehellou Y, Johnson C, Knebel A, Macartney TJ, et al. The CUL3-KLHL3 E3 ligase complex mutated in Gordon’s hypertension syndrome interacts with and ubiquitylates WNK isoforms: disease-causing mutations in KLHL3 and WNK4 disrupt interaction. Biochem J. 2013;451:111–22. https://doi.org/10.1042/BJ20121903 .
doi: 10.1042/BJ20121903 pubmed: 23387299 pmcid: 3632089
Shibata S, Zhang J, Puthumana J, Stone KL, Lifton RP. Kelch-like 3 and Cullin 3 regulate electrolyte homeostasis via ubiquitination and degradation of WNK4. Proc Natl Acad Sci USA. 2013;110:7838–43. https://doi.org/10.1073/pnas.1304592110 .
doi: 10.1073/pnas.1304592110 pubmed: 23576762
Wu G, Peng J-B. Disease-causing mutations in KLHL3 impair its effect on WNK4 degradation. FEBS Lett. 2013;587:1717–22. https://doi.org/10.1016/j.febslet.2013.04.032 .
doi: 10.1016/j.febslet.2013.04.032 pubmed: 23665031 pmcid: 3697765
Mori Y, Wakabayashi M, Mori T, Araki Y, Sohara E, Rai T, et al. Decrease of WNK4 ubiquitination by disease-causing mutations of KLHL3 through different molecular mechanisms. Biochem Biophys Res Commun. 2013;439:30–4. https://doi.org/10.1016/j.bbrc.2013.08.035 .
doi: 10.1016/j.bbrc.2013.08.035 pubmed: 23962426
Susa K, Sohara E, Rai T, Zeniya M, Mori Y, Mori T, et al. Impaired degradation of WNK1 and WNK4 kinases causes PHAII in mutant KLHL3 knock-in mice. Hum Mol Genet. 2014;23:5052–60. https://doi.org/10.1093/hmg/ddu217 .
doi: 10.1093/hmg/ddu217 pubmed: 24821705
Sasaki E, Susa K, Mori T, Isobe K, Araki Y, Inoue Y, et al. KLHL3 knockout mice reveal the physiological role of KLHL3 and the pathophysiology of pseudohypoaldosteronism type II caused by mutant KLHL3. Mol Cell Biol. 2017;37. https://doi.org/10.1128/MCB.00508-16 .
Araki Y, Rai T, Sohara E, Mori T, Inoue Y, Isobe K, et al. Generation and analysis of knock-in mice carrying pseudohypoaldosteronism type II-causing mutations in the cullin 3 gene. Biol Open. 2015;4:1509–17. https://doi.org/10.1242/bio.013276 .
doi: 10.1242/bio.013276 pubmed: 26490675 pmcid: 4728349
Ferdaus MZ, Miller LN, Agbor LN, Saritas T, Singer JD, Sigmund CD, et al. Mutant Cullin 3 causes familial hyperkalemic hypertension via dominant effects. JCI Insight. 2017;2. https://doi.org/10.1172/jci.insight.96700 .
McCormick JA, Yang C-L, Zhang C, Davidge B, Blankenstein KI, Terker AS, et al. Hyperkalemic hypertension–associated cullin 3 promotes WNK signaling by degrading KLHL3. J Clin Invest. 2014;124:4723–36. https://doi.org/10.1172/JCI76126 .
doi: 10.1172/JCI76126 pubmed: 25250572 pmcid: 4347254
Yoshida S, Araki Y, Mori T, Sasaki E, Kasagi Y, Isobe K, et al. Decreased KLHL3 expression is involved in the pathogenesis of pseudohypoaldosteronism type II caused by cullin 3 mutation in vivo. Clin Exp Nephrol. 2018;22:1251–7. https://doi.org/10.1007/s10157-018-1593-z .
doi: 10.1007/s10157-018-1593-z pubmed: 29869755
Genschik P, Sumara I, Lechner E. The emerging family of CULLIN3-RING ubiquitin ligases (CRL3s): cellular functions and disease implications. EMBO J. 2013;32:2307–20. https://doi.org/10.1038/emboj.2013.173 .
doi: 10.1038/emboj.2013.173 pubmed: 23912815 pmcid: 3770339
Schumacher F, Siew K, Zhang J, Johnson C, Wood N, Cleary SE, et al. Characterisation of the Cullin‐3 mutation that causes a severe form of familial hypertension and hyperkalaemia. EMBO Mol Med. 2015;7:1285–306. https://doi.org/10.15252/emmm.201505444 .
doi: 10.15252/emmm.201505444 pubmed: 26286618 pmcid: 4604684
Pintard L, Kurz T, Glaser S, Willis JH, Peter M, Bowerman B. Neddylation and deneddylation of CUL-3 is required to target MEI-1/Katanin for degradation at the meiosis-to-mitosis transition in C. elegans. Curr Biol. 2003;13:911–21. https://doi.org/10.1016/s0960-9822(03)00336-1 .
doi: 10.1016/s0960-9822(03)00336-1 pubmed: 12781129
Cornelius RJ, Zhang C, Erspamer KJ, Agbor LN, Sigmund CD, Singer JD, et al. Dual gain and loss of cullin 3 function mediates familial hyperkalemic hypertension. Am J Physiol Physiol. 2018;315:F1006–18. https://doi.org/10.1152/ajprenal.00602.2017 .
doi: 10.1152/ajprenal.00602.2017
Cornelius RJ, Si J, Cuevas CA, Nelson JW, Gratreak BDK, Pardi R, et al. Renal COP9 signalosome deficiency alters CUL3-KLHL3-WNK signaling pathway. J Am Soc Nephro. 2018. https://doi.org/10.1681/ASN.2018030333 .
Abdel Khalek W, Rafael C, Loisel-Ferreira I, Kouranti I, Clauser E, Hadchouel J, et al. Severe arterial hypertension from cullin 3 mutations is caused by both renal and vascular effects. J Am Soc Nephrol. 2019;30:811–23. https://doi.org/10.1681/ASN.2017121307 .
doi: 10.1681/ASN.2017121307 pubmed: 30967423 pmcid: 6493989
Agbor LN, Ibeawuchi S-RC, Hu C, Wu J, Davis DR, Keen HL, et al. Cullin-3 mutation causes arterial stiffness and hypertension through a vascular smooth muscle mechanism. JCI Insight. 2016;1. https://doi.org/10.1172/jci.insight.91015 .
Susa K, Sohara E, Takahashi D, Okado T, Rai T, Uchida S. WNK4 is indispensable for the pathogenesis of pseudohypoaldosteronism type II caused by mutant KLHL3. Biochem Biophys Res Commun. 2017;491:727–32. https://doi.org/10.1016/j.bbrc.2017.07.121 .
doi: 10.1016/j.bbrc.2017.07.121 pubmed: 28743496
Kotchen TA, Cowley AW, Frohlich ED. Salt in Health and Disease—a delicate balance. N Engl J Med. 2013;368:1229–37. https://doi.org/10.1056/NEJMra1212606 .
doi: 10.1056/NEJMra1212606 pubmed: 23534562
Hall JE. Renal dysfunction, rather than nonrenal vascular dysfunction, mediates salt-induced hypertension. Circulation. 2016;133:894–906. https://doi.org/10.1161/CIRCULATIONAHA.115.018526 .
doi: 10.1161/CIRCULATIONAHA.115.018526 pubmed: 26927007 pmcid: 5009905
Chiga M, Rai T, Yang S-S, Ohta A, Takizawa T, Sasaki S, et al. Dietary salt regulates the phosphorylation of OSR1/SPAK kinases and the sodium chloride cotransporter through aldosterone. Kidney Int. 2008;74:1403–9. https://doi.org/10.1038/ki.2008.451 .
doi: 10.1038/ki.2008.451 pubmed: 18800028
San-Cristobal P, Pacheco-Alvarez D, Richardson C, Ring AM, Vazquez N, Rafiqi FH, et al. Angiotensin II signaling increases activity of the renal Na-Cl cotransporter through a WNK4-SPAK-dependent pathway. Proc Natl Acad Sci USA. 2009;106:4384–9. https://doi.org/10.1073/pnas.0813238106 .
doi: 10.1073/pnas.0813238106 pubmed: 19240212
Talati G, Ohta A, Rai T, Sohara E, Naito S, Vandewalle A, et al. Effect of angiotensin II on the WNK-OSR1/SPAK-NCC phosphorylation cascade in cultured mpkDCT cells and in vivo mouse kidney. Biochem Biophys Res Commun. 2010;393:844–8. https://doi.org/10.1016/j.bbrc.2010.02.096 .
doi: 10.1016/j.bbrc.2010.02.096 pubmed: 20175999
van der Lubbe N, Lim CH, Fenton RA, Meima ME, Jan Danser AH, Zietse R, et al. Angiotensin II induces phosphorylation of the thiazide-sensitive sodium chloride cotransporter independent of aldosterone. Kidney Int. 2011;79:66–76. https://doi.org/10.1038/ki.2010.290 .
doi: 10.1038/ki.2010.290 pubmed: 20720527
Cheng L, Poulsen SB, Wu Q, Esteva-Font C, Olesen ETB, Peng L, et al. Rapid aldosterone-mediated signaling in the DCT increases activity of the thiazide-sensitive NaCl cotransporter. J Am Soc Nephrol. 2019;30:1454–70. https://doi.org/10.1681/ASN.2018101025 .
doi: 10.1681/ASN.2018101025 pubmed: 31253651
Wolley MJ, Wu A, Xu S, Gordon RD, Fenton RA, Stowasser M. In primary aldosteronism, mineralocorticoids influence exosomal sodium-chloride cotransporter abundance. J Am Soc Nephrol. 2017;28:56–63. https://doi.org/10.1681/ASN.2015111221 .
doi: 10.1681/ASN.2015111221 pubmed: 27381844
Czogalla J, Vohra T, Penton D, Kirschmann M, Craigie E, Loffing J. The mineralocorticoid receptor (MR) regulates ENaC but not NCC in mice with random MR deletion. Pflügers Arch—Eur J Physiol. 2016;468:849–58. https://doi.org/10.1007/s00424-016-1798-5 .
doi: 10.1007/s00424-016-1798-5
Terker AS, Yarbrough B, Ferdaus MZ, Lazelle RA, Erspamer KJ, Meermeier NP, et al. Direct and indirect mineralocorticoid effects determine distal salt transport. J Am Soc Nephrol. 2016;27:2436–45. https://doi.org/10.1681/ASN.2015070815 .
doi: 10.1681/ASN.2015070815 pubmed: 26712527
Shibata S, Arroyo JP, Castaneda-Bueno M, Puthumana J, Zhang J, Uchida S, et al. Angiotensin II signaling via protein kinase C phosphorylates Kelch-like 3, preventing WNK4 degradation. Proc Natl Acad Sci USA. 2014;111:15556–61. https://doi.org/10.1073/pnas.1418342111 .
doi: 10.1073/pnas.1418342111 pubmed: 25313067
Mente A, O’Donnell MJ, Rangarajan S, McQueen MJ, Poirier P, Wielgosz A, et al. PURE investigators. Association of urinary sodium and potassium excretion with blood pressure. N Engl J Med. 2014;371:601–11. https://doi.org/10.1056/NEJMoa1311989 .
doi: 10.1056/NEJMoa1311989 pubmed: 25119606
Mente A, O’Donnell M, Rangarajan S, McQueen M, Dagenais G, Wielgosz A, et al. Urinary sodium excretion, blood pressure, cardiovascular disease, and mortality: a community-level prospective epidemiological cohort study. Lancet. 2018;392:496–506. https://doi.org/10.1016/S0140-6736(18)31376-X .
doi: 10.1016/S0140-6736(18)31376-X pubmed: 30129465
O’Donnell M, Mente A, Rangarajan S, McQueen MJ, Wang X, Liu L, et al. Urinary sodium and potassium excretion, mortality, and cardiovascular events. N Engl J Med. 2014;371:612–23. https://doi.org/10.1056/NEJMoa1311889 .
doi: 10.1056/NEJMoa1311889 pubmed: 25119607
Terker AS, Zhang C, McCormick JA, Lazelle RA, Zhang C, Meermeier NP, et al. Potassium modulates electrolyte balance and blood pressure through effects on distal cell voltage and chloride. Cell Metab. 2015;21:39–50. https://doi.org/10.1016/j.cmet.2014.12.006 .
doi: 10.1016/j.cmet.2014.12.006 pubmed: 25565204 pmcid: 4332769
Terker AS, Zhang C, Erspamer KJ, Gamba G, Yang C-L, Ellison DH. Unique chloride-sensing properties of WNK4 permit the distal nephron to modulate potassium homeostasis. Kidney Int. 2016;89:127–34. https://doi.org/10.1038/ki.2015.289 .
doi: 10.1038/ki.2015.289 pubmed: 26422504 pmcid: 4814375
Wade JB, Liu J, Coleman R, Grimm PR, Delpire E, Welling PA. SPAK-mediated NCC regulation in response to low-K+ diet. Am J Physiol Ren Physiol. 2015;308:F923–31. https://doi.org/10.1152/ajprenal.00388.2014 .
doi: 10.1152/ajprenal.00388.2014
Ferdaus MZ, Barber KW, López-Cayuqueo KI, Terker AS, Argaiz ER, Gassaway BM, et al. SPAK and OSR1 play essential roles in potassium homeostasis through actions on the distal convoluted tubule. J Physiol. 2016;594:4945–66. https://doi.org/10.1113/JP272311 .
doi: 10.1113/JP272311 pubmed: 27068441 pmcid: 5009767
Vitzthum H, Seniuk A, Schulte LH, Müller ML, Hetz H, Ehmke H. Functional coupling of renal K + and Na + handling causes high blood pressure in Na + replete mice. J Physiol. 2014;592:1139–57. https://doi.org/10.1113/jphysiol.2013.266924 .
doi: 10.1113/jphysiol.2013.266924 pubmed: 24396058 pmcid: 3948568
Castañeda-Bueno M, Cervantes-Perez LG, Rojas-Vega L, Arroyo-Garza I, Vázquez N, Moreno E, et al. Modulation of NCC activity by low and high K + intake: insights into the signaling pathways involved. Am J Physiol Physiol. 2014;306:F1507–19. https://doi.org/10.1152/ajprenal.00255.2013 .
doi: 10.1152/ajprenal.00255.2013
Piala AT, Moon TM, Akella R, He H, Cobb MH, Goldsmith EJ. Chloride Sensing by WNK1 involves inhibition of autophosphorylation. Sci Signal. 2014;7:ra41. https://doi.org/10.1126/scisignal.2005050 .
doi: 10.1126/scisignal.2005050 pubmed: 24803536 pmcid: 4123527
Wang M-X, Cuevas CA, Su X-T, Wu P, Gao Z-X, Lin D-H, et al. Potassium intake modulates the thiazide-sensitive sodium-chloride cotransporter (NCC) activity via the Kir4.1 potassium channel. Kidney Int. 2018;93:893–902. https://doi.org/10.1016/j.kint.2017.10.023 .
doi: 10.1016/j.kint.2017.10.023 pubmed: 29310825 pmcid: 6481177
Wu P, Gao Z-X, Zhang D-D, Su X-T, Wang W-H, Lin D-H. Deletion of Kir5.1 impairs renal ability to excrete potassium during increased dietary potassium intake. J Am Soc Nephrol. 2019;30:1425–38. https://doi.org/10.1681/ASN.2019010025 .
doi: 10.1681/ASN.2019010025 pubmed: 31239388
Nomura N, Shoda W, Wang Y, Mandai S, Furusho T, Takahashi D, et al. Role of ClC-K and barttin in low potassium-induced sodium chloride cotransporter activation and hypertension in mouse kidney. Biosci Rep. 2018;38. https://doi.org/10.1042/BSR20171243 .
Chen J-C, Lo Y-F, Lin Y-W, Lin S-H, Huang C-L, Cheng C-J. WNK4 kinase is a physiological intracellular chloride sensor. Proc Natl Acad Sci USA. 2019;116:4502–7. https://doi.org/10.1073/pnas.1817220116 .
doi: 10.1073/pnas.1817220116 pubmed: 30765526
Nomura N, Shoda W, Uchida S. Clinical importance of potassium intake and molecular mechanism of potassium regulation. Clin Exp Nephrol. 2019;23:1175–80. https://doi.org/10.1007/s10157-019-01766-x .
doi: 10.1007/s10157-019-01766-x pubmed: 31317362 pmcid: 6746677
Rengarajan S, Lee DH, Oh YT, Delpire E, Youn JH, McDonough AA. Increasing plasma [K +] by intravenous potassium infusion reduces NCC phosphorylation and drives kaliuresis and natriuresis. Am J Physiol Physiol. 2014;306:F1059–68. https://doi.org/10.1152/ajprenal.00015.2014 .
doi: 10.1152/ajprenal.00015.2014
Shoda W, Nomura N, Ando F, Mori Y, Mori T, Sohara E, et al. Calcineurin inhibitors block sodium-chloride cotransporter dephosphorylation in response to high potassium intake. Kidney Int. 2017;91:402–11. https://doi.org/10.1016/j.kint.2016.09.001 .
doi: 10.1016/j.kint.2016.09.001 pubmed: 28341239
Penton D, Moser S, Wengi A, Czogalla J, Rosenbaek LL, Rigendinger F, et al. Protein phosphatase 1 inhibitor–1 mediates the cAMP-dependent stimulation of the renal NaCl cotransporter. J Am Soc Nephrol. 2019;30:737–50. https://doi.org/10.1681/ASN.2018050540 .
doi: 10.1681/ASN.2018050540 pubmed: 30902838 pmcid: 6493980
Chen J, Gu D, Huang J, Rao DC, Jaquish CE, Hixson JE GenSalt Collaborative Research Group, et al. Metabolic syndrome and salt sensitivity of blood pressure in non-diabetic people in China: a dietary intervention study. Lancet. 2009;373:829–35. https://doi.org/10.1016/S0140-6736(09)60144-6 .
doi: 10.1016/S0140-6736(09)60144-6 pubmed: 19223069 pmcid: 2822441
Chávez-Canales M, Arroyo JP, Ko B, Vázquez N, Bautista R, Castañeda-Bueno M. et al. Insulin increases the functional activity of the renal NaCl cotransporter. J Hypertens. 2013;31:303–11. https://doi.org/10.1097/HJH.0b013e32835bbb83 .
doi: 10.1097/HJH.0b013e32835bbb83 pubmed: 23303355 pmcid: 3781588
Komers R, Rogers S, Oyama TT, Xu B, Yang C-L, McCormick J, et al. Enhanced phosphorylation of Na(+)-Cl- co-transporter in experimental metabolic syndrome: role of insulin. Clin Sci. 2012;123:635–47. https://doi.org/10.1042/CS20120003 .
doi: 10.1042/CS20120003 pubmed: 22651238 pmcid: 3943429
Sohara E, Rai T, Yang S-S, Ohta A, Naito S, Chiga M. et al. Acute insulin stimulation induces phosphorylation of the Na-Cl cotransporter in cultured distal mpkDCT cells and mouse kidney. PLoS One. 2011;6:e24277. https://doi.org/10.1371/journal.pone.0024277 .
doi: 10.1371/journal.pone.0024277 pubmed: 21909387 pmcid: 3164195
Nishida H, Sohara E, Nomura N, Chiga M, Alessi DR, Rai T, et al. Phosphatidylinositol 3-kinase/Akt signaling pathway activates the WNK-OSR1/SPAK-NCC phosphorylation cascade in hyperinsulinemic db/db mice. Hypertension. 2012;60:981–90. https://doi.org/10.1161/HYPERTENSIONAHA.112.201509 .
doi: 10.1161/HYPERTENSIONAHA.112.201509 pubmed: 22949526 pmcid: 3743028
Ishizawa K, Wang Q, Li J, Xu N, Nemoto Y, Morimoto C, et al. Inhibition of sodium glucose cotransporter 2 attenuates the dysregulation of Kelch-Like 3 and NaCl cotransporter in obese diabetic mice. J Am Soc Nephrol. 2019;30:782–94. https://doi.org/10.1681/ASN.2018070703 .
doi: 10.1681/ASN.2018070703 pubmed: 30914436 pmcid: 6493993
Yoshizaki Y, Mori Y, Tsuzaki Y, Mori T, Nomura N, Wakabayashi M, et al. Impaired degradation of WNK by Akt and PKA phosphorylation of KLHL3. Biochem Biophys Res Commun. 2015;467:229–34. https://doi.org/10.1016/j.bbrc.2015.09.184 .
doi: 10.1016/j.bbrc.2015.09.184 pubmed: 26435498
Punzi HA, Punzi CF. Metabolic issues in the antihypertensive and lipid-lowering heart attack trial study. Curr Hypertens Rep. 2004;6:106–10. https://doi.org/10.1007/s11906-004-0084-7 .
doi: 10.1007/s11906-004-0084-7 pubmed: 15010012
Mori T, Kikuchi E, Watanabe Y, Fujii S, Ishigami-Yuasa M, Kagechika H, et al. Chemical library screening for WNK signalling inhibitors using fluorescence correlation spectroscopy. Biochem J. 2013;455:339–45. https://doi.org/10.1042/BJ20130597 .
doi: 10.1042/BJ20130597 pubmed: 23981180
Kikuchi E, Mori T, Zeniya M, Isobe K, Ishigami-Yuasa M, Fujii S, et al. Discovery of novel SPAK inhibitors that block WNK kinase signaling to cation chloride transporters. J Am Soc Nephrol. 2015;26:1525–36. https://doi.org/10.1681/ASN.2014060560 .
doi: 10.1681/ASN.2014060560 pubmed: 25377078
Yamada K, Park H-M, Rigel DF, DiPetrillo K, Whalen EJ, Anisowicz A, et al. Small-molecule WNK inhibition regulates cardiovascular and renal function. Nat Chem Biol. 2016;12:896–8. https://doi.org/10.1038/nchembio.2168 .
doi: 10.1038/nchembio.2168 pubmed: 27595330
Hashimoto H, Nomura N, Shoda W, Isobe K, Kikuchi H, Yamamoto K, et al. Metformin increases urinary sodium excretion by reducing phosphorylation of the sodium-chloride cotransporter. Metabolism. 2018;85:23–31. https://doi.org/10.1016/j.metabol.2018.02.009 .
doi: 10.1016/j.metabol.2018.02.009 pubmed: 29510178
Townsend RR, Taler SJ. Management of hypertension in chronic kidney disease. Nat Rev Nephrol. 2015;11:555–63. https://doi.org/10.1038/nrneph.2015.114 .
doi: 10.1038/nrneph.2015.114 pubmed: 26215512
Kamat NV, Thabet SR, Xiao L, Saleh MA, Kirabo A, Madhur MS, et al. Renal transporter activation during angiotensin-II hypertension is blunted in interferon-γ-/- and interleukin-17A-/- mice. Hypertension. 2015;65:569–76. https://doi.org/10.1161/HYPERTENSIONAHA.114.04975 .
doi: 10.1161/HYPERTENSIONAHA.114.04975 pubmed: 25601932 pmcid: 4326622
Gonzalez-Villalobos RA, Janjoulia T, Fletcher NK, Giani JF, Nguyen MTX, Riquier-Brison AD, et al. The absence of intrarenal ACE protects against hypertension. J Clin Invest. 2013;123:2011–23. https://doi.org/10.1172/JCI65460 .
doi: 10.1172/JCI65460 pubmed: 23619363 pmcid: 3638907
Kobayashi R, Wakui H, Azushima K, Uneda K, Haku S, Ohki K, et al. An angiotensin II type 1 receptor binding molecule has a critical role in hypertension in a chronic kidney disease model. Kidney Int. 2017;91:1115–25. https://doi.org/10.1016/j.kint.2016.10.035 .
doi: 10.1016/j.kint.2016.10.035 pubmed: 28081856
Rucker AJ, Rudemiller NP, Crowley SD. Salt, hypertension, and immunity. Annu Rev Physiol. 2018;80:283–307. https://doi.org/10.1146/annurev-physiol-021317-121134 .
doi: 10.1146/annurev-physiol-021317-121134 pubmed: 29144825
Norlander AE, Madhur MS, Harrison DG. The immunology of hypertension. J Exp Med. 2018;215:21–33. https://doi.org/10.1084/jem.20171773 .
doi: 10.1084/jem.20171773 pubmed: 29247045 pmcid: 5748862
Guzik TJ, Hoch NE, Brown KA, McCann LA, Rahman A, Dikalov S, et al. Role of the T cell in the genesis of angiotensin II–induced hypertension and vascular dysfunction. J Exp Med. 2007;204:2449–60. https://doi.org/10.1084/jem.20070657 .
doi: 10.1084/jem.20070657 pubmed: 17875676 pmcid: 2118469
Zhang J, Patel MB, Griffiths R, Mao A, Song Y, Karlovich NS, et al. Tumor necrosis factor-α produced in the kidney contributes to angiotensin II-dependent hypertension. Hypertension. 2014;64:1275–81. https://doi.org/10.1161/HYPERTENSIONAHA.114.03863 .
doi: 10.1161/HYPERTENSIONAHA.114.03863 pubmed: 25185128 pmcid: 4339088
Yoshida S, Takeuchi T, Kotani T, Yamamoto N, Hata K, Nagai K, et al. Infliximab, a TNF-α inhibitor, reduces 24-h ambulatory blood pressure in rheumatoid arthritis patients. J Hum Hypertens. 2014;28:165–9. https://doi.org/10.1038/jhh.2013.80 .
doi: 10.1038/jhh.2013.80 pubmed: 24005958
Furusho T, Sohara E, Mandai S, Kikuchi H, Takahashi N, Fujimaru T, et al. Renal TNFα activates the WNK phosphorylation cascade and contributes to salt-sensitive hypertension in chronic kidney disease. Kidney Int. 2020;97:713–27. https://doi.org/10.1016/j.kint.2019.11.021 .
doi: 10.1016/j.kint.2019.11.021 pubmed: 32059997
Roy A, Al-Qusairi L, Donnelly BF, Ronzaud C, Marciszyn AL, Gong F, et al. Alternatively spliced proline-rich cassettes link WNK1 to aldosterone action. J Clin Invest. 2015;125:3433–48. https://doi.org/10.1172/JCI75245 .
doi: 10.1172/JCI75245 pubmed: 26241057 pmcid: 4588284
Takahashi D, Mori T, Sohara E, Tanaka M, Chiga M, Inoue Y, et al. WNK4 is an adipogenic factor and its deletion reduces diet-induced obesity in mice. EBioMedicine. 2017;18:118–27. https://doi.org/10.1016/j.ebiom.2017.03.011 .
doi: 10.1016/j.ebiom.2017.03.011 pubmed: 28314693 pmcid: 5405161
Torre-Villalvazo I, Cervantes-Pérez LG, Noriega LG, Jiménez JV, Uribe N, Chávez-Canales M, et al. Inactivation of SPAK kinase reduces body weight gain in mice fed a high-fat diet by improving energy expenditure and insulin sensitivity. Am J Physiol Metab. 2018;314:E53–65. https://doi.org/10.1152/ajpendo.00108.2017 .
doi: 10.1152/ajpendo.00108.2017
Mandai S, Mori T, Nomura N, Furusho T, Arai Y, Kikuchi H, et al. WNK1 regulates skeletal muscle cell hypertrophy by modulating the nuclear localization and transcriptional activity of FOXO4. Sci Rep. 2018;8. https://doi.org/10.1038/s41598-018-27414-0 .
Köchl R, Thelen F, Vanes L, Brazão TF, Fountain K, Xie J, et al. WNK1 kinase balances T cell adhesion versus migration in vivo. Nat Immunol. 2016;17:1075–83. https://doi.org/10.1038/ni.3495 .
doi: 10.1038/ni.3495 pubmed: 27400149 pmcid: 4994873
Perry JSA, Morioka S, Medina CB, Iker Etchegaray J, Barron B, Raymond MH, et al. Interpreting an apoptotic corpse as anti-inflammatory involves a chloride sensing pathway. Nat Cell Biol. 2019;21:1532–43. https://doi.org/10.1038/s41556-019-0431-1 .
doi: 10.1038/s41556-019-0431-1 pubmed: 31792382 pmcid: 7140761
Dbouk HA, Weil LM, Perera GKS, Dellinger MT, Pearson G, Brekken RA, et al. Actions of the protein kinase WNK1 on endothelial cells are differentially mediated by its substrate kinases OSR1 and SPAK. Proc Natl Acad Sci USA. 2014;111:15999–6004. https://doi.org/10.1073/pnas.1419057111 .
doi: 10.1073/pnas.1419057111 pubmed: 25362046
Xie J, Yoon J, Yang S-S, Lin S-H, Huang C-L. WNK1 protein kinase regulates embryonic cardiovascular development through the OSR1 signaling cascade. J Biol Chem. 2013;288:8566–74. https://doi.org/10.1074/jbc.M113.451575 .
doi: 10.1074/jbc.M113.451575 pubmed: 23386621 pmcid: 3605675
Gallolu Kankanamalage S, Karra AS, Cobb MH. WNK pathways in cancer signaling networks. Cell Commun Signal. 2018;16:72. https://doi.org/10.1186/s12964-018-0287-1 .
doi: 10.1186/s12964-018-0287-1 pubmed: 30390653 pmcid: 6215617

Auteurs

Taisuke Furusho (T)

Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.

Shinichi Uchida (S)

Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.

Eisei Sohara (E)

Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan. esohara.kid@tmd.ac.jp.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH