Compatibility at amino acid position 98 of MICB reduces the incidence of graft-versus-host disease in conjunction with the CMV status.
Journal
Bone marrow transplantation
ISSN: 1476-5365
Titre abrégé: Bone Marrow Transplant
Pays: England
ID NLM: 8702459
Informations de publication
Date de publication:
07 2020
07 2020
Historique:
received:
17
12
2019
accepted:
23
03
2020
revised:
17
03
2020
pubmed:
15
4
2020
medline:
22
6
2021
entrez:
15
4
2020
Statut:
ppublish
Résumé
Graft-versus-host disease (GVHD) and cytomegalovirus (CMV)-related complications are leading causes of mortality after unrelated-donor hematopoietic cell transplantation (UD-HCT). The non-conventional MHC class I gene MICB, alike MICA, encodes a stress-induced polymorphic NKG2D ligand. However, unlike MICA, MICB interacts with the CMV-encoded UL16, which sequestrates MICB intracellularly, leading to immune evasion. Here, we retrospectively analyzed the impact of mismatches in MICB amino acid position 98 (MICB98), a key polymorphic residue involved in UL16 binding, in 943 UD-HCT pairs who were allele-matched at HLA-A, -B, -C, -DRB1, -DQB1 and MICA loci. HLA-DP typing was further available. MICB98 mismatches were significantly associated with an increased incidence of acute (grade II-IV: HR, 1.20; 95% CI, 1.15 to 1.24; P < 0.001; grade III-IV: HR, 2.28; 95% CI, 1.56 to 3.34; P < 0.001) and chronic GVHD (HR, 1.21; 95% CI, 1.10 to 1.33; P < 0.001). MICB98 matching significantly reduced the effect of CMV status on overall mortality from a hazard ratio of 1.77 to 1.16. MICB98 mismatches showed a GVHD-independent association with a higher incidence of CMV infection/reactivation (HR, 1.84; 95% CI, 1.34 to 2.51; P < 0.001). Hence selecting a MICB98-matched donor significantly reduces the GVHD incidence and lowers the impact of CMV status on overall survival.
Identifiants
pubmed: 32286503
doi: 10.1038/s41409-020-0886-5
pii: 10.1038/s41409-020-0886-5
doi:
Substances chimiques
Amino Acids
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1367-1378Subventions
Organisme : Institut National de la Santé et de la Recherche Médicale (National Institute of Health and Medical Research)
ID : U1109
Pays : International
Organisme : Institut Universitaire de France (IUF)
ID : Membre senior
Pays : International
Organisme : Agence Nationale de la Recherche (French National Research Agency)
ID : ANR-11-LABX-0070_TRANSPLANTEX
Pays : International
Organisme : EC | European Regional Development Fund (Europski Fond za Regionalni Razvoj)
ID : INTERREG V program - n°3.2 TRIDIAG
Pays : International
Références
Forman JS, Negrin SR, Antin HJ, Appelbaum RF. Thomas’ hematopoietic cell transplantation, 5th ed.; Chichester: Wiley-blackwell; 2016.
Appelbaum FR, Thomas ED. Thomas' hematopoietic cell transplantation: stem cell transplantation, 4th ed. Wiley-Blackwell: Chichester; 2009.
Gratwohl A, Baldomero H, Aljurf M, Pasquini MC, Bouzas LF, Yoshimi A, et al. Hematopoietic stem cell transplantation: a global perspective. JAMA. 2010;303:1617–24. https://doi.org/10.1001/jama.2010.491 .
doi: 10.1001/jama.2010.491
pubmed: 20424252
pmcid: 3219875
D'Souza A, Fretham C. Current uses and outcomes of hematopoietic cell transplantation (HCT): CIBMTR Summary Slides; 2018. https://www.cibmtr.org . Accessed April 2019.
Gooley TA, Chien JW, Pergam SA, Hingorani S, Sorror ML, Boeckh M, et al. Reduced mortality after allogeneic hematopoietic-cell transplantation. N Engl J Med. 2010;363:2091–101. https://doi.org/10.1056/NEJMoa1004383 .
doi: 10.1056/NEJMoa1004383
pubmed: 21105791
pmcid: 3017343
Warren EH, Zhang XC, Li S, Fan W, Storer BE, Chien JW, et al. Effect of MHC and non-MHC donor/recipient genetic disparity on the outcome of allogeneic HCT. Blood. 2012;120:2796–806. https://doi.org/10.1182/blood-2012-04-347286 .
doi: 10.1182/blood-2012-04-347286
pubmed: 22859606
pmcid: 3466963
Mori T, Kato J. Cytomegalovirus infection/disease after hematopoietic stem cell transplantation. Int J Hematol. 2010;91:588–95. https://doi.org/10.1007/s12185-010-0569-x . e-pub ahead of print 2010/04/24.
doi: 10.1007/s12185-010-0569-x
pubmed: 20414753
Paris C, Kopp K, King A, Santolaya ME, Zepeda AJ, Palma J. Cytomegalovirus infection in children undergoing hematopoietic stem cell transplantation in Chile. Pediatr Blood Cancer. 2009;53:453–8. https://doi.org/10.1002/pbc.22060 .
doi: 10.1002/pbc.22060
pubmed: 19418548
Boeckh M, Nichols WG, Papanicolaou G, Rubin R, Wingard JR, Zaia J. Cytomegalovirus in hematopoietic stem cell transplant recipients: current status, known challenges, and future strategies. Biol Blood Marrow Transplant. 2003;9:543–58.
doi: 10.1016/S1083-8791(03)00287-8
Boeckh M, Ljungman P. How we treat cytomegalovirus in hematopoietic cell transplant recipients. Blood. 2009;113:5711–9. https://doi.org/10.1182/blood-2008-10-143560 . e-pub ahead of print 2009/03/21.
doi: 10.1182/blood-2008-10-143560
pubmed: 19299333
pmcid: 2700312
Ljungman P, Griffiths P, Paya C. Definitions of cytomegalovirus infection and disease in transplant recipients. Clin Infect Dis. 2002;34:1094–7. https://doi.org/10.1086/339329 .
doi: 10.1086/339329
pubmed: 11914998
Ljungman P, Hakki M, Boeckh M. Cytomegalovirus in hematopoietic stem cell transplant recipients. Hematol/Oncol Clin N Am. 2011;25:151–69. https://doi.org/10.1016/j.hoc.2010.11.011 .
doi: 10.1016/j.hoc.2010.11.011
Takenaka K, Nishida T, Asano-Mori Y, Oshima K, Ohashi K, Mori T, et al. Cytomegalovirus reactivation after allogeneic hematopoietic stem cell transplantation is associated with a reduced risk of relapse in patients with acute myeloid leukemia who survived to day 100 after transplantation: the Japan Society for Hematopoietic Cell Transplantation Transplantation-related Complication Working Group. Biol Blood Marrow Transplant. 2015;21:2008–16. https://doi.org/10.1016/j.bbmt.2015.07.019 .
doi: 10.1016/j.bbmt.2015.07.019
pubmed: 26211985
Manjappa S, Bhamidipati PK, Stokerl-Goldstein KE, DiPersio JF, Uy GL, Westervelt P, et al. Protective effect of cytomegalovirus reactivation on relapse after allogeneic hematopoietic cell transplantation in acute myeloid leukemia patients is influenced by conditioning regimen. Biol Blood Marrow Transplant. 2014;20:46–52. https://doi.org/10.1016/j.bbmt.2013.10.003 . e-pub ahead of print 2013/10/15.
doi: 10.1016/j.bbmt.2013.10.003
pubmed: 24120526
Jang JE, Kim SJ, Cheong JW, Hyun SY, Kim YD, Kim YR, et al. Early CMV replication and subsequent chronic GVHD have a significant anti-leukemic effect after allogeneic HSCT in acute myeloid leukemia. Ann Hematol. 2015;94:275–82. https://doi.org/10.1007/s00277-014-2190-1 . e-pub ahead of print 2014/08/20.
doi: 10.1007/s00277-014-2190-1
pubmed: 25135450
Nichols WG, Corey L, Gooley T, Davis C, Boeckh M. High risk of death due to bacterial and fungal infection among cytomegalovirus (CMV)-seronegative recipients of stem cell transplants from seropositive donors: evidence for indirect effects of primary CMV infection. J Infect Dis. 2002;185:273–82. https://doi.org/10.1086/338624 . e-pub ahead of print 2002/01/25.
doi: 10.1086/338624
pubmed: 11807708
Sousa H, Boutolleau D, Ribeiro J, Teixeira AL, Pinho Vaz C, Campilho F, et al. Cytomegalovirus infection in patients who underwent allogeneic hematopoietic stem cell transplantation in Portugal: a five-year retrospective review. Biol Blood Marrow Transplant. 2014;20:1958–67. https://doi.org/10.1016/j.bbmt.2014.08.010 .
doi: 10.1016/j.bbmt.2014.08.010
pubmed: 25139217
Ichihara H, Nakamae H, Hirose A, Nakane T, Koh H, Hayashi Y, et al. Immunoglobulin prophylaxis against cytomegalovirus infection in patients at high risk of infection following allogeneic hematopoietic cell transplantation. Transplant Proc. 2011;43:3927–32. https://doi.org/10.1016/j.transproceed.2011.08.104 .
doi: 10.1016/j.transproceed.2011.08.104
pubmed: 22172874
Schmidt-Hieber M, Labopin M, Beelen D, Volin L, Ehninger G, Finke J, et al. CMV serostatus still has an important prognostic impact in de novo acute leukemia patients after allogeneic stem cell transplantation: a report from the Acute Leukemia Working Party of EBMT. Blood. 2013;122:3359–64. https://doi.org/10.1182/blood-2013-05-499830 .
doi: 10.1182/blood-2013-05-499830
pubmed: 24037724
Petersdorf EW. Optimal HLA matching in hematopoietic cell transplantation. Curr Opin Immunol. 2008;20:588–93. https://doi.org/10.1016/j.coi.2008.06.014 .
doi: 10.1016/j.coi.2008.06.014
pubmed: 18674615
pmcid: 3182141
Miller W, Flynn P, McCullough J, Balfour HH,Jr, Goldman A, Haake R, et al. Cytomegalovirus infection after bone marrow transplantation: an association with acute graft-v-host disease. Blood. 1986;67:1162–7.
doi: 10.1182/blood.V67.4.1162.1162
Flomenberg N, Baxter-Lowe LA, Confer D, Fernandez-Vina M, Filipovich A, Horowitz M, et al. Impact of HLA class I and class II high-resolution matching on outcomes of unrelated donor bone marrow transplantation: HLA-C mismatching is associated with a strong adverse effect on transplantation outcome. Blood. 2004;104:1923–30. https://doi.org/10.1182/blood-2004-03-0803 .
doi: 10.1182/blood-2004-03-0803
pubmed: 15191952
Ruell J, Barnes C, Mutton K, Foulkes B, Chang J, Cavet J, et al. Active CMV disease does not always correlate with viral load detection. Bone Marrow Transplant. 2007;40:55–61. https://doi.org/10.1038/sj.bmt.1705671 .
doi: 10.1038/sj.bmt.1705671
pubmed: 17468776
Castagnola E, Cappelli B, Erba D, Rabagliati A, Lanino E, Dini G. Cytomegalovirus infection after bone marrow transplantation in children. Hum Immunol. 2004;65:416–22. https://doi.org/10.1016/j.humimm.2004.02.013 .
doi: 10.1016/j.humimm.2004.02.013
pubmed: 15172440
Bahram S, Bresnahan M, Geraghty DE, Spies T. A second lineage of mammalian major histocompatibility complex class I genes. Proc Natl Acad Sci USA. 1994;91:6259–63. https://doi.org/10.1073/pnas.91.14.6259 .
doi: 10.1073/pnas.91.14.6259
pubmed: 8022771
Carapito R, Bahram S. Genetics, genomics, and evolutionary biology of NKG2D ligands. Immunological Rev. 2015;267:88–116. https://doi.org/10.1111/imr.12328 .
doi: 10.1111/imr.12328
Bahram S, Spies T. Nucleotide sequence of a human MHC class I MICB cDNA. Immunogenetics. 1996;43:230–3.
pubmed: 8575823
Bahram S, Shiina T, Oka A, Tamiya G, Inoko H. Genomic structure of the human MHC class I MICB gene. Immunogenetics. 1996;45:161–2.
doi: 10.1007/s002510050184
Carapito R, Jung N, Kwemou M, Untrau M, Michel S, Pichot A, et al. Matching for the nonconventional MHC-I MICA gene significantly reduces the incidence of acute and chronic GVHD. Blood. 2016;128:1979–86. https://doi.org/10.1182/blood-2016-05-719070 .
doi: 10.1182/blood-2016-05-719070
pubmed: 27549307
pmcid: 5147017
Fuerst D, Neuchel C, Niederwieser D, Bunjes D, Gramatzki M, Wagner E, et al. Matching for the MICA-129 polymorphism is beneficial in unrelated hematopoietic stem cell transplantation. Blood. 2016;128:3169–76. https://doi.org/10.1182/blood-2016-05-716357 .
doi: 10.1182/blood-2016-05-716357
pubmed: 27811019
Petersdorf EW, Hansen JA, Martin PJ, Woolfrey A, Malkki M, Gooley T, et al. Major-histocompatibility-complex class I alleles and antigens in hematopoietic-cell transplantation. N Engl J Med. 2001;345:1794–800. https://doi.org/10.1056/NEJMoa011826 .
doi: 10.1056/NEJMoa011826
pubmed: 11752355
Groh V, Bahram S, Bauer S, Herman A, Beauchamp M, Spies T. Cell stress-regulated human major histocompatibility complex class I gene expressed in gastrointestinal epithelium. Proc Natl Acad Sci USA. 1996;93:12445–50.
doi: 10.1073/pnas.93.22.12445
Wang WY, Tian W, Zhu FM, Liu XX, Li LX, Wang F. MICA, MICB polymorphisms and linkage disequilibrium with HLA-B in a Chinese Mongolian population. Scand J Immunol. 2016;83:456–62. https://doi.org/10.1111/sji.12437 .
doi: 10.1111/sji.12437
pubmed: 27028549
Liu X, Tian W, Li L, Cai J. Characterization of the major histocompatibility complex class I chain-related gene B (MICB) polymorphism in a northern Chinese Han population: the identification of a new MICB allele, MICB*023. Hum Immunol. 2011;72:727–32. https://doi.org/10.1016/j.humimm.2011.05.013 .
doi: 10.1016/j.humimm.2011.05.013
pubmed: 21664939
Lanier LL. Up on the tightrope: natural killer cell activation and inhibition. Nat Immunol. 2008;9:495–502. https://doi.org/10.1038/ni1581 .
doi: 10.1038/ni1581
pubmed: 18425106
pmcid: 2669298
Cosman D, Mullberg J, Sutherland CL, Chin W, Armitage R, Fanslow W, et al. ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity. 2001;14:123–33.
doi: 10.1016/S1074-7613(01)00095-4
Klumkrathok K, Jumnainsong A, Leelayuwat C. Allelic MHC class I chain related B (MICB) molecules affect the binding to the human cytomegalovirus (HCMV) unique long 16 (UL16) protein: implications for immune surveillance. J Microbiol. 2013;51:241–6. https://doi.org/10.1007/s12275-013-2514-1 .
doi: 10.1007/s12275-013-2514-1
pubmed: 23625227
Muller S, Zocher G, Steinle A, Stehle T. Structure of the HCMV UL16-MICB complex elucidates select binding of a viral immunoevasin to diverse NKG2D ligands. PLoS Pathog. 2010;6:e1000723. https://doi.org/10.1371/journal.ppat.1000723 .
doi: 10.1371/journal.ppat.1000723
pubmed: 20090832
pmcid: 2797645
Hill GR, Ferrara JL. The primacy of the gastrointestinal tract as a target organ of acute graft-versus-host disease: rationale for the use of cytokine shields in allogeneic bone marrow transplantation. Blood. 2000;95:2754–9.
doi: 10.1182/blood.V95.9.2754.009k25_2754_2759
Isernhagen A, Malzahn D, Viktorova E, Elsner L, Monecke S, von Bonin F, et al. The MICA-129 dimorphism affects NKG2D signaling and outcome of hematopoietic stem cell transplantation. EMBO Mol Med. 2015;7:1480–502. https://doi.org/10.15252/emmm.201505246 .
doi: 10.15252/emmm.201505246
pubmed: 26483398
pmcid: 4644379
Boukouaci W, Busson M, Peffault de Latour R, Rocha V, Suberbielle C, Bengoufa D, et al. MICA-129 genotype, soluble MICA, and anti-MICA antibodies as biomarkers of chronic graft-versus-host disease. Blood. 2009;114:5216–24. https://doi.org/10.1182/blood-2009-04-217430 .
doi: 10.1182/blood-2009-04-217430
pubmed: 19786616
Parmar S, Del Lima M, Zou Y, Patah PA, Liu P, Cano P, et al. Donor-recipient mismatches in MHC class I chain-related gene A in unrelated donor transplantation lead to increased incidence of acute graft-versus-host disease. Blood. 2009;114:2884–7. https://doi.org/10.1182/blood-2009-05-223172 .
doi: 10.1182/blood-2009-05-223172
pubmed: 19654407
pmcid: 4784289
Pellet P, Renaud M, Fodil N, Laloux L, Inoko H, Hauptmann G, et al. Allelic repertoire of the human MICB gene. Immunogenetics. 1997;46:434–6.
doi: 10.1007/s002510050299
Glucksberg H, Storb R, Fefer A, Buckner CD, Neiman PE, Clift RA, et al. Clinical manifestations of graft-versus-host disease in human recipients of marrow from HL-A-matched sibling donors. Transplantation. 1974;18:295–304. https://doi.org/10.1097/00007890-197410000-00001 .
doi: 10.1097/00007890-197410000-00001
pubmed: 4153799
pmcid: 4153799
Scheike TH, Zhang MJ. Analyzing competing risk data using the R timereg package. J Stat Softw. 2011;30:i02.
Scheike TH, Zhang MJ. Flexible competing risks regression modeling and goodness-of-fit. Lifetime Data Anal. 2008;14:464–83. https://doi.org/10.1007/s10985-008-9094-0 .
doi: 10.1007/s10985-008-9094-0
pubmed: 18752067
pmcid: 2715961
Scheike T, Zhang M, Gerds T. Predicting cumulative incidence probability by direct binomial regression. Biometrika. 2008;95:205–20.
doi: 10.1093/biomet/asm096
Therneau T, Grambsch P. Modeling survival data: extending the Cox model. New York: Springer; 2000.
Fleischhauer K, Shaw BE, Gooley T, Malkki M, Bardy P, Bignon JD, et al. Effect of T-cell-epitope matching at HLA-DPB1 in recipients of unrelated-donor haemopoietic-cell transplantation: a retrospective study. Lancet Oncol. 2012;13:366–74. https://doi.org/10.1016/S1470-2045(12)70004-9 .
doi: 10.1016/S1470-2045(12)70004-9
pubmed: 22340965
Peduzzi P, Concato J, Feinstein AR, Holford TR. Importance of events per independent variable in proportional hazards regression analysis. II. Accuracy and precision of regression estimates. J Clin Epidemiol. 1995;48:1503–10. https://doi.org/10.1016/0895-4356(95)00048-8 .
doi: 10.1016/0895-4356(95)00048-8
pubmed: 8543964
Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR. A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol. 1996;49:1373–9. https://doi.org/10.1016/s0895-4356(96)00236-3 .
doi: 10.1016/s0895-4356(96)00236-3
pubmed: 8970487
Team RDC. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2010. http://R-project.org .
Wu J, Chalupny NJ, Manley TJ, Riddell SR, Cosman D, Spies T. Intracellular retention of the MHC class I-related chain B ligand of NKG2D by the human cytomegalovirus UL16 glycoprotein. J Immunol. 2003;170:4196–200.
doi: 10.4049/jimmunol.170.8.4196
Spreu J, Stehle T, Steinle A. Human cytomegalovirus-encoded UL16 discriminates MIC molecules by their alpha2 domains. J Immunol. 2006;177:3143–9.
doi: 10.4049/jimmunol.177.5.3143
Nikolich-Zugich J, Goodrum F, Knox K, Smithey MJ. Known unknowns: how might the persistent herpesvirome shape immunity and aging? Curr Opin Immunol. 2017;48:23–30. https://doi.org/10.1016/j.coi.2017.07.011 .
doi: 10.1016/j.coi.2017.07.011
pubmed: 28780492
pmcid: 5682194
de la Camara R. CMV in hematopoietic stem cell transplantation. Mediterranean J Hematol Infect Dis. 2016;8:e2016031. https://doi.org/10.4084/MJHID.2016.031 .
doi: 10.4084/MJHID.2016.031
Broers AE, van Der Holt R, van Esser JW, Gratama JW, Henzen-Logmans S, Kuenen-Boumeester V, et al. Increased transplant-related morbidity and mortality in CMV-seropositive patients despite highly effective prevention of CMV disease after allogeneic T-cell-depleted stem cell transplantation. Blood. 2000;95:2240–5.
doi: 10.1182/blood.V95.7.2240
Cantoni N, Hirsch HH, Khanna N, Gerull S, Buser A, Bucher C, et al. Evidence for a bidirectional relationship between cytomegalovirus replication and acute graft-versus-host disease. Biol Blood Marrow Transplant. 2010;16:1309–14. https://doi.org/10.1016/j.bbmt.2010.03.020 .
doi: 10.1016/j.bbmt.2010.03.020
pubmed: 20353832