Compatibility at amino acid position 98 of MICB reduces the incidence of graft-versus-host disease in conjunction with the CMV status.


Journal

Bone marrow transplantation
ISSN: 1476-5365
Titre abrégé: Bone Marrow Transplant
Pays: England
ID NLM: 8702459

Informations de publication

Date de publication:
07 2020
Historique:
received: 17 12 2019
accepted: 23 03 2020
revised: 17 03 2020
pubmed: 15 4 2020
medline: 22 6 2021
entrez: 15 4 2020
Statut: ppublish

Résumé

Graft-versus-host disease (GVHD) and cytomegalovirus (CMV)-related complications are leading causes of mortality after unrelated-donor hematopoietic cell transplantation (UD-HCT). The non-conventional MHC class I gene MICB, alike MICA, encodes a stress-induced polymorphic NKG2D ligand. However, unlike MICA, MICB interacts with the CMV-encoded UL16, which sequestrates MICB intracellularly, leading to immune evasion. Here, we retrospectively analyzed the impact of mismatches in MICB amino acid position 98 (MICB98), a key polymorphic residue involved in UL16 binding, in 943 UD-HCT pairs who were allele-matched at HLA-A, -B, -C, -DRB1, -DQB1 and MICA loci. HLA-DP typing was further available. MICB98 mismatches were significantly associated with an increased incidence of acute (grade II-IV: HR, 1.20; 95% CI, 1.15 to 1.24; P < 0.001; grade III-IV: HR, 2.28; 95% CI, 1.56 to 3.34; P < 0.001) and chronic GVHD (HR, 1.21; 95% CI, 1.10 to 1.33; P < 0.001). MICB98 matching significantly reduced the effect of CMV status on overall mortality from a hazard ratio of 1.77 to 1.16. MICB98 mismatches showed a GVHD-independent association with a higher incidence of CMV infection/reactivation (HR, 1.84; 95% CI, 1.34 to 2.51; P < 0.001). Hence selecting a MICB98-matched donor significantly reduces the GVHD incidence and lowers the impact of CMV status on overall survival.

Identifiants

pubmed: 32286503
doi: 10.1038/s41409-020-0886-5
pii: 10.1038/s41409-020-0886-5
doi:

Substances chimiques

Amino Acids 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1367-1378

Subventions

Organisme : Institut National de la Santé et de la Recherche Médicale (National Institute of Health and Medical Research)
ID : U1109
Pays : International
Organisme : Institut Universitaire de France (IUF)
ID : Membre senior
Pays : International
Organisme : Agence Nationale de la Recherche (French National Research Agency)
ID : ANR-11-LABX-0070_TRANSPLANTEX
Pays : International
Organisme : EC | European Regional Development Fund (Europski Fond za Regionalni Razvoj)
ID : INTERREG V program - n°3.2 TRIDIAG
Pays : International

Références

Forman JS, Negrin SR, Antin HJ, Appelbaum RF. Thomas’ hematopoietic cell transplantation, 5th ed.; Chichester: Wiley-blackwell; 2016.
Appelbaum FR, Thomas ED. Thomas' hematopoietic cell transplantation: stem cell transplantation, 4th ed. Wiley-Blackwell: Chichester; 2009.
Gratwohl A, Baldomero H, Aljurf M, Pasquini MC, Bouzas LF, Yoshimi A, et al. Hematopoietic stem cell transplantation: a global perspective. JAMA. 2010;303:1617–24. https://doi.org/10.1001/jama.2010.491 .
doi: 10.1001/jama.2010.491 pubmed: 20424252 pmcid: 3219875
D'Souza A, Fretham C. Current uses and outcomes of hematopoietic cell transplantation (HCT): CIBMTR Summary Slides; 2018. https://www.cibmtr.org . Accessed April 2019.
Gooley TA, Chien JW, Pergam SA, Hingorani S, Sorror ML, Boeckh M, et al. Reduced mortality after allogeneic hematopoietic-cell transplantation. N Engl J Med. 2010;363:2091–101. https://doi.org/10.1056/NEJMoa1004383 .
doi: 10.1056/NEJMoa1004383 pubmed: 21105791 pmcid: 3017343
Warren EH, Zhang XC, Li S, Fan W, Storer BE, Chien JW, et al. Effect of MHC and non-MHC donor/recipient genetic disparity on the outcome of allogeneic HCT. Blood. 2012;120:2796–806. https://doi.org/10.1182/blood-2012-04-347286 .
doi: 10.1182/blood-2012-04-347286 pubmed: 22859606 pmcid: 3466963
Mori T, Kato J. Cytomegalovirus infection/disease after hematopoietic stem cell transplantation. Int J Hematol. 2010;91:588–95. https://doi.org/10.1007/s12185-010-0569-x . e-pub ahead of print 2010/04/24.
doi: 10.1007/s12185-010-0569-x pubmed: 20414753
Paris C, Kopp K, King A, Santolaya ME, Zepeda AJ, Palma J. Cytomegalovirus infection in children undergoing hematopoietic stem cell transplantation in Chile. Pediatr Blood Cancer. 2009;53:453–8. https://doi.org/10.1002/pbc.22060 .
doi: 10.1002/pbc.22060 pubmed: 19418548
Boeckh M, Nichols WG, Papanicolaou G, Rubin R, Wingard JR, Zaia J. Cytomegalovirus in hematopoietic stem cell transplant recipients: current status, known challenges, and future strategies. Biol Blood Marrow Transplant. 2003;9:543–58.
doi: 10.1016/S1083-8791(03)00287-8
Boeckh M, Ljungman P. How we treat cytomegalovirus in hematopoietic cell transplant recipients. Blood. 2009;113:5711–9. https://doi.org/10.1182/blood-2008-10-143560 . e-pub ahead of print 2009/03/21.
doi: 10.1182/blood-2008-10-143560 pubmed: 19299333 pmcid: 2700312
Ljungman P, Griffiths P, Paya C. Definitions of cytomegalovirus infection and disease in transplant recipients. Clin Infect Dis. 2002;34:1094–7. https://doi.org/10.1086/339329 .
doi: 10.1086/339329 pubmed: 11914998
Ljungman P, Hakki M, Boeckh M. Cytomegalovirus in hematopoietic stem cell transplant recipients. Hematol/Oncol Clin N Am. 2011;25:151–69. https://doi.org/10.1016/j.hoc.2010.11.011 .
doi: 10.1016/j.hoc.2010.11.011
Takenaka K, Nishida T, Asano-Mori Y, Oshima K, Ohashi K, Mori T, et al. Cytomegalovirus reactivation after allogeneic hematopoietic stem cell transplantation is associated with a reduced risk of relapse in patients with acute myeloid leukemia who survived to day 100 after transplantation: the Japan Society for Hematopoietic Cell Transplantation Transplantation-related Complication Working Group. Biol Blood Marrow Transplant. 2015;21:2008–16. https://doi.org/10.1016/j.bbmt.2015.07.019 .
doi: 10.1016/j.bbmt.2015.07.019 pubmed: 26211985
Manjappa S, Bhamidipati PK, Stokerl-Goldstein KE, DiPersio JF, Uy GL, Westervelt P, et al. Protective effect of cytomegalovirus reactivation on relapse after allogeneic hematopoietic cell transplantation in acute myeloid leukemia patients is influenced by conditioning regimen. Biol Blood Marrow Transplant. 2014;20:46–52. https://doi.org/10.1016/j.bbmt.2013.10.003 . e-pub ahead of print 2013/10/15.
doi: 10.1016/j.bbmt.2013.10.003 pubmed: 24120526
Jang JE, Kim SJ, Cheong JW, Hyun SY, Kim YD, Kim YR, et al. Early CMV replication and subsequent chronic GVHD have a significant anti-leukemic effect after allogeneic HSCT in acute myeloid leukemia. Ann Hematol. 2015;94:275–82. https://doi.org/10.1007/s00277-014-2190-1 . e-pub ahead of print 2014/08/20.
doi: 10.1007/s00277-014-2190-1 pubmed: 25135450
Nichols WG, Corey L, Gooley T, Davis C, Boeckh M. High risk of death due to bacterial and fungal infection among cytomegalovirus (CMV)-seronegative recipients of stem cell transplants from seropositive donors: evidence for indirect effects of primary CMV infection. J Infect Dis. 2002;185:273–82. https://doi.org/10.1086/338624 . e-pub ahead of print 2002/01/25.
doi: 10.1086/338624 pubmed: 11807708
Sousa H, Boutolleau D, Ribeiro J, Teixeira AL, Pinho Vaz C, Campilho F, et al. Cytomegalovirus infection in patients who underwent allogeneic hematopoietic stem cell transplantation in Portugal: a five-year retrospective review. Biol Blood Marrow Transplant. 2014;20:1958–67. https://doi.org/10.1016/j.bbmt.2014.08.010 .
doi: 10.1016/j.bbmt.2014.08.010 pubmed: 25139217
Ichihara H, Nakamae H, Hirose A, Nakane T, Koh H, Hayashi Y, et al. Immunoglobulin prophylaxis against cytomegalovirus infection in patients at high risk of infection following allogeneic hematopoietic cell transplantation. Transplant Proc. 2011;43:3927–32. https://doi.org/10.1016/j.transproceed.2011.08.104 .
doi: 10.1016/j.transproceed.2011.08.104 pubmed: 22172874
Schmidt-Hieber M, Labopin M, Beelen D, Volin L, Ehninger G, Finke J, et al. CMV serostatus still has an important prognostic impact in de novo acute leukemia patients after allogeneic stem cell transplantation: a report from the Acute Leukemia Working Party of EBMT. Blood. 2013;122:3359–64. https://doi.org/10.1182/blood-2013-05-499830 .
doi: 10.1182/blood-2013-05-499830 pubmed: 24037724
Petersdorf EW. Optimal HLA matching in hematopoietic cell transplantation. Curr Opin Immunol. 2008;20:588–93. https://doi.org/10.1016/j.coi.2008.06.014 .
doi: 10.1016/j.coi.2008.06.014 pubmed: 18674615 pmcid: 3182141
Miller W, Flynn P, McCullough J, Balfour HH,Jr, Goldman A, Haake R, et al. Cytomegalovirus infection after bone marrow transplantation: an association with acute graft-v-host disease. Blood. 1986;67:1162–7.
doi: 10.1182/blood.V67.4.1162.1162
Flomenberg N, Baxter-Lowe LA, Confer D, Fernandez-Vina M, Filipovich A, Horowitz M, et al. Impact of HLA class I and class II high-resolution matching on outcomes of unrelated donor bone marrow transplantation: HLA-C mismatching is associated with a strong adverse effect on transplantation outcome. Blood. 2004;104:1923–30. https://doi.org/10.1182/blood-2004-03-0803 .
doi: 10.1182/blood-2004-03-0803 pubmed: 15191952
Ruell J, Barnes C, Mutton K, Foulkes B, Chang J, Cavet J, et al. Active CMV disease does not always correlate with viral load detection. Bone Marrow Transplant. 2007;40:55–61. https://doi.org/10.1038/sj.bmt.1705671 .
doi: 10.1038/sj.bmt.1705671 pubmed: 17468776
Castagnola E, Cappelli B, Erba D, Rabagliati A, Lanino E, Dini G. Cytomegalovirus infection after bone marrow transplantation in children. Hum Immunol. 2004;65:416–22. https://doi.org/10.1016/j.humimm.2004.02.013 .
doi: 10.1016/j.humimm.2004.02.013 pubmed: 15172440
Bahram S, Bresnahan M, Geraghty DE, Spies T. A second lineage of mammalian major histocompatibility complex class I genes. Proc Natl Acad Sci USA. 1994;91:6259–63. https://doi.org/10.1073/pnas.91.14.6259 .
doi: 10.1073/pnas.91.14.6259 pubmed: 8022771
Carapito R, Bahram S. Genetics, genomics, and evolutionary biology of NKG2D ligands. Immunological Rev. 2015;267:88–116. https://doi.org/10.1111/imr.12328 .
doi: 10.1111/imr.12328
Bahram S, Spies T. Nucleotide sequence of a human MHC class I MICB cDNA. Immunogenetics. 1996;43:230–3.
pubmed: 8575823
Bahram S, Shiina T, Oka A, Tamiya G, Inoko H. Genomic structure of the human MHC class I MICB gene. Immunogenetics. 1996;45:161–2.
doi: 10.1007/s002510050184
Carapito R, Jung N, Kwemou M, Untrau M, Michel S, Pichot A, et al. Matching for the nonconventional MHC-I MICA gene significantly reduces the incidence of acute and chronic GVHD. Blood. 2016;128:1979–86. https://doi.org/10.1182/blood-2016-05-719070 .
doi: 10.1182/blood-2016-05-719070 pubmed: 27549307 pmcid: 5147017
Fuerst D, Neuchel C, Niederwieser D, Bunjes D, Gramatzki M, Wagner E, et al. Matching for the MICA-129 polymorphism is beneficial in unrelated hematopoietic stem cell transplantation. Blood. 2016;128:3169–76. https://doi.org/10.1182/blood-2016-05-716357 .
doi: 10.1182/blood-2016-05-716357 pubmed: 27811019
Petersdorf EW, Hansen JA, Martin PJ, Woolfrey A, Malkki M, Gooley T, et al. Major-histocompatibility-complex class I alleles and antigens in hematopoietic-cell transplantation. N Engl J Med. 2001;345:1794–800. https://doi.org/10.1056/NEJMoa011826 .
doi: 10.1056/NEJMoa011826 pubmed: 11752355
Groh V, Bahram S, Bauer S, Herman A, Beauchamp M, Spies T. Cell stress-regulated human major histocompatibility complex class I gene expressed in gastrointestinal epithelium. Proc Natl Acad Sci USA. 1996;93:12445–50.
doi: 10.1073/pnas.93.22.12445
Wang WY, Tian W, Zhu FM, Liu XX, Li LX, Wang F. MICA, MICB polymorphisms and linkage disequilibrium with HLA-B in a Chinese Mongolian population. Scand J Immunol. 2016;83:456–62. https://doi.org/10.1111/sji.12437 .
doi: 10.1111/sji.12437 pubmed: 27028549
Liu X, Tian W, Li L, Cai J. Characterization of the major histocompatibility complex class I chain-related gene B (MICB) polymorphism in a northern Chinese Han population: the identification of a new MICB allele, MICB*023. Hum Immunol. 2011;72:727–32. https://doi.org/10.1016/j.humimm.2011.05.013 .
doi: 10.1016/j.humimm.2011.05.013 pubmed: 21664939
Lanier LL. Up on the tightrope: natural killer cell activation and inhibition. Nat Immunol. 2008;9:495–502. https://doi.org/10.1038/ni1581 .
doi: 10.1038/ni1581 pubmed: 18425106 pmcid: 2669298
Cosman D, Mullberg J, Sutherland CL, Chin W, Armitage R, Fanslow W, et al. ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity. 2001;14:123–33.
doi: 10.1016/S1074-7613(01)00095-4
Klumkrathok K, Jumnainsong A, Leelayuwat C. Allelic MHC class I chain related B (MICB) molecules affect the binding to the human cytomegalovirus (HCMV) unique long 16 (UL16) protein: implications for immune surveillance. J Microbiol. 2013;51:241–6. https://doi.org/10.1007/s12275-013-2514-1 .
doi: 10.1007/s12275-013-2514-1 pubmed: 23625227
Muller S, Zocher G, Steinle A, Stehle T. Structure of the HCMV UL16-MICB complex elucidates select binding of a viral immunoevasin to diverse NKG2D ligands. PLoS Pathog. 2010;6:e1000723. https://doi.org/10.1371/journal.ppat.1000723 .
doi: 10.1371/journal.ppat.1000723 pubmed: 20090832 pmcid: 2797645
Hill GR, Ferrara JL. The primacy of the gastrointestinal tract as a target organ of acute graft-versus-host disease: rationale for the use of cytokine shields in allogeneic bone marrow transplantation. Blood. 2000;95:2754–9.
doi: 10.1182/blood.V95.9.2754.009k25_2754_2759
Isernhagen A, Malzahn D, Viktorova E, Elsner L, Monecke S, von Bonin F, et al. The MICA-129 dimorphism affects NKG2D signaling and outcome of hematopoietic stem cell transplantation. EMBO Mol Med. 2015;7:1480–502. https://doi.org/10.15252/emmm.201505246 .
doi: 10.15252/emmm.201505246 pubmed: 26483398 pmcid: 4644379
Boukouaci W, Busson M, Peffault de Latour R, Rocha V, Suberbielle C, Bengoufa D, et al. MICA-129 genotype, soluble MICA, and anti-MICA antibodies as biomarkers of chronic graft-versus-host disease. Blood. 2009;114:5216–24. https://doi.org/10.1182/blood-2009-04-217430 .
doi: 10.1182/blood-2009-04-217430 pubmed: 19786616
Parmar S, Del Lima M, Zou Y, Patah PA, Liu P, Cano P, et al. Donor-recipient mismatches in MHC class I chain-related gene A in unrelated donor transplantation lead to increased incidence of acute graft-versus-host disease. Blood. 2009;114:2884–7. https://doi.org/10.1182/blood-2009-05-223172 .
doi: 10.1182/blood-2009-05-223172 pubmed: 19654407 pmcid: 4784289
Pellet P, Renaud M, Fodil N, Laloux L, Inoko H, Hauptmann G, et al. Allelic repertoire of the human MICB gene. Immunogenetics. 1997;46:434–6.
doi: 10.1007/s002510050299
Glucksberg H, Storb R, Fefer A, Buckner CD, Neiman PE, Clift RA, et al. Clinical manifestations of graft-versus-host disease in human recipients of marrow from HL-A-matched sibling donors. Transplantation. 1974;18:295–304. https://doi.org/10.1097/00007890-197410000-00001 .
doi: 10.1097/00007890-197410000-00001 pubmed: 4153799 pmcid: 4153799
Scheike TH, Zhang MJ. Analyzing competing risk data using the R timereg package. J Stat Softw. 2011;30:i02.
Scheike TH, Zhang MJ. Flexible competing risks regression modeling and goodness-of-fit. Lifetime Data Anal. 2008;14:464–83. https://doi.org/10.1007/s10985-008-9094-0 .
doi: 10.1007/s10985-008-9094-0 pubmed: 18752067 pmcid: 2715961
Scheike T, Zhang M, Gerds T. Predicting cumulative incidence probability by direct binomial regression. Biometrika. 2008;95:205–20.
doi: 10.1093/biomet/asm096
Therneau T, Grambsch P. Modeling survival data: extending the Cox model. New York: Springer; 2000.
Fleischhauer K, Shaw BE, Gooley T, Malkki M, Bardy P, Bignon JD, et al. Effect of T-cell-epitope matching at HLA-DPB1 in recipients of unrelated-donor haemopoietic-cell transplantation: a retrospective study. Lancet Oncol. 2012;13:366–74. https://doi.org/10.1016/S1470-2045(12)70004-9 .
doi: 10.1016/S1470-2045(12)70004-9 pubmed: 22340965
Peduzzi P, Concato J, Feinstein AR, Holford TR. Importance of events per independent variable in proportional hazards regression analysis. II. Accuracy and precision of regression estimates. J Clin Epidemiol. 1995;48:1503–10. https://doi.org/10.1016/0895-4356(95)00048-8 .
doi: 10.1016/0895-4356(95)00048-8 pubmed: 8543964
Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR. A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol. 1996;49:1373–9. https://doi.org/10.1016/s0895-4356(96)00236-3 .
doi: 10.1016/s0895-4356(96)00236-3 pubmed: 8970487
Team RDC. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2010. http://R-project.org .
Wu J, Chalupny NJ, Manley TJ, Riddell SR, Cosman D, Spies T. Intracellular retention of the MHC class I-related chain B ligand of NKG2D by the human cytomegalovirus UL16 glycoprotein. J Immunol. 2003;170:4196–200.
doi: 10.4049/jimmunol.170.8.4196
Spreu J, Stehle T, Steinle A. Human cytomegalovirus-encoded UL16 discriminates MIC molecules by their alpha2 domains. J Immunol. 2006;177:3143–9.
doi: 10.4049/jimmunol.177.5.3143
Nikolich-Zugich J, Goodrum F, Knox K, Smithey MJ. Known unknowns: how might the persistent herpesvirome shape immunity and aging? Curr Opin Immunol. 2017;48:23–30. https://doi.org/10.1016/j.coi.2017.07.011 .
doi: 10.1016/j.coi.2017.07.011 pubmed: 28780492 pmcid: 5682194
de la Camara R. CMV in hematopoietic stem cell transplantation. Mediterranean J Hematol Infect Dis. 2016;8:e2016031. https://doi.org/10.4084/MJHID.2016.031 .
doi: 10.4084/MJHID.2016.031
Broers AE, van Der Holt R, van Esser JW, Gratama JW, Henzen-Logmans S, Kuenen-Boumeester V, et al. Increased transplant-related morbidity and mortality in CMV-seropositive patients despite highly effective prevention of CMV disease after allogeneic T-cell-depleted stem cell transplantation. Blood. 2000;95:2240–5.
doi: 10.1182/blood.V95.7.2240
Cantoni N, Hirsch HH, Khanna N, Gerull S, Buser A, Bucher C, et al. Evidence for a bidirectional relationship between cytomegalovirus replication and acute graft-versus-host disease. Biol Blood Marrow Transplant. 2010;16:1309–14. https://doi.org/10.1016/j.bbmt.2010.03.020 .
doi: 10.1016/j.bbmt.2010.03.020 pubmed: 20353832

Auteurs

Raphael Carapito (R)

Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France. carapito@unistra.fr.
Labex TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France. carapito@unistra.fr.
INSERM Franco-Japanese Nextgen HLA Laboratory, Strasbourg, France. carapito@unistra.fr.
INSERM Franco-Japanese Nextgen HLA Laboratory, Nagano, Japan. carapito@unistra.fr.
Laboratoire d'Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, France. carapito@unistra.fr.

Ismail Aouadi (I)

Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.
Labex TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.
INSERM Franco-Japanese Nextgen HLA Laboratory, Strasbourg, France.
INSERM Franco-Japanese Nextgen HLA Laboratory, Nagano, Japan.

Angélique Pichot (A)

Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.
Labex TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.
INSERM Franco-Japanese Nextgen HLA Laboratory, Strasbourg, France.
INSERM Franco-Japanese Nextgen HLA Laboratory, Nagano, Japan.

Perrine Spinnhirny (P)

Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.
Labex TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.
INSERM Franco-Japanese Nextgen HLA Laboratory, Strasbourg, France.
INSERM Franco-Japanese Nextgen HLA Laboratory, Nagano, Japan.

Aurore Morlon (A)

Labex TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.
BIOMICA SAS, Strasbourg, France.

Irina Kotova (I)

Labex TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.
BIOMICA SAS, Strasbourg, France.

Cécile Macquin (C)

Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.
Labex TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.
INSERM Franco-Japanese Nextgen HLA Laboratory, Strasbourg, France.
INSERM Franco-Japanese Nextgen HLA Laboratory, Nagano, Japan.

Véronique Rolli (V)

Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.
Labex TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.
INSERM Franco-Japanese Nextgen HLA Laboratory, Strasbourg, France.
INSERM Franco-Japanese Nextgen HLA Laboratory, Nagano, Japan.

Anne Cesbron (A)

Labex TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.
Etablissement Français du Sang (EFS) Centre-Pays de la Loire, Laboratoire HLA, Nantes, France.
Société Francophone de Greffe de Moelle et de Thérapie Cellulaire (SFGM-TC), Hôpital Edouard Herriot, CHU, Lyon, France.
Société Francophone d'Histocompatibilité et d'Immunogénétique (SFHI), Paris, France.

Katia Gagne (K)

Labex TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.
Etablissement Français du Sang (EFS) Centre-Pays de la Loire, Laboratoire HLA, Nantes, France.
INSERM 1232, CRCINA, Université Nantes-Angers, Nantes, France.

Machteld Oudshoorn (M)

Europdonor operated by Matchis Foundation, Leiden, The Netherlands.
Department of Immunohematology and Blood transfusion, LUMC, Leiden, The Netherlands.

Bronno van der Holt (B)

HOVON Data Center, Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.

Myriam Labalette (M)

Laboratoire d'Immunologie, CHRU de Lille, Lille, France.
LIRIC INSERM U995, Université Lille 2, Lille, France.

Eric Spierings (E)

Laboratory for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.

Christophe Picard (C)

CNRS, EFS-PACA, ADES UMR 7268, Aix-Marseille Université, Marseille, France.

Pascale Loiseau (P)

Labex TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.
Société Francophone de Greffe de Moelle et de Thérapie Cellulaire (SFGM-TC), Hôpital Edouard Herriot, CHU, Lyon, France.
Laboratoire Jean Dausset, INSERM UMR_S 1160, Hôpital Saint-Louis, Paris, France.

Ryad Tamouza (R)

Labex TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.
Laboratoire Jean Dausset, INSERM UMR_S 1160, Hôpital Saint-Louis, Paris, France.

Antoine Toubert (A)

Labex TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.
Société Francophone de Greffe de Moelle et de Thérapie Cellulaire (SFGM-TC), Hôpital Edouard Herriot, CHU, Lyon, France.
Laboratoire Jean Dausset, INSERM UMR_S 1160, Hôpital Saint-Louis, Paris, France.

Anne Parissiadis (A)

Société Francophone de Greffe de Moelle et de Thérapie Cellulaire (SFGM-TC), Hôpital Edouard Herriot, CHU, Lyon, France.
Etablissement Français du Sang (EFS) Grand-Est, Laboratoire HLA, Strasbourg, France.

Valérie Dubois (V)

Etablissement Français du Sang (EFS) Rhône-Alpes, Laboratoire HLA, Lyon, France.

Catherine Paillard (C)

Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.
Labex TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.
Société Francophone de Greffe de Moelle et de Thérapie Cellulaire (SFGM-TC), Hôpital Edouard Herriot, CHU, Lyon, France.
Service d'Hématologie et d'Oncologie pédiatrique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.

Myriam Maumy-Bertrand (M)

Institut de Recherche Mathématique Avancée, CNRS UMR 7501, LabEx Institut de Recherche en Mathématiques, ses Interactions et Applications, Université de Strasbourg, Strasbourg, France.

Frédéric Bertrand (F)

Institut de Recherche Mathématique Avancée, CNRS UMR 7501, LabEx Institut de Recherche en Mathématiques, ses Interactions et Applications, Université de Strasbourg, Strasbourg, France.

Peter A von dem Borne (PA)

Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands.

Jürgen H E Kuball (JHE)

Department of Hematology, University Medical Center Utrecht, Utrecht, The Netherlands.

Mauricette Michallet (M)

Société Francophone de Greffe de Moelle et de Thérapie Cellulaire (SFGM-TC), Hôpital Edouard Herriot, CHU, Lyon, France.
Centre Hospitalier Lyon Sud, Hématologie 1G, Hospices Civils de Lyon, Pierre Bénite, Lyon, France.

Bruno Lioure (B)

Société Francophone de Greffe de Moelle et de Thérapie Cellulaire (SFGM-TC), Hôpital Edouard Herriot, CHU, Lyon, France.
Service d'Hématologie Adulte, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.

Régis Peffault de Latour (R)

Labex TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.
Société Francophone de Greffe de Moelle et de Thérapie Cellulaire (SFGM-TC), Hôpital Edouard Herriot, CHU, Lyon, France.
Service d'Hématologie - Greffe, Hôpital Saint-Louis, APHP, Paris, France.

Didier Blaise (D)

Société Francophone de Greffe de Moelle et de Thérapie Cellulaire (SFGM-TC), Hôpital Edouard Herriot, CHU, Lyon, France.
Institut Paoli Calmettes, Marseille, France.

Jan J Cornelissen (JJ)

Department of Hematology and ErasmusMC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.

Ibrahim Yakoub-Agha (I)

Société Francophone de Greffe de Moelle et de Thérapie Cellulaire (SFGM-TC), Hôpital Edouard Herriot, CHU, Lyon, France.
LIRIC INSERM U995, Université Lille 2, Lille, France.

Frans Claas (F)

Department of Immunohematology and Blood transfusion, LUMC, Leiden, The Netherlands.

Philippe Moreau (P)

Société Francophone de Greffe de Moelle et de Thérapie Cellulaire (SFGM-TC), Hôpital Edouard Herriot, CHU, Lyon, France.
Service d'Hématologie Clinique, CHU Hôtel Dieu, Nantes, France.

Dominique Charron (D)

Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.
Labex TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.
Laboratoire Jean Dausset, INSERM UMR_S 1160, Hôpital Saint-Louis, Paris, France.

Mohamad Mohty (M)

Société Francophone de Greffe de Moelle et de Thérapie Cellulaire (SFGM-TC), Hôpital Edouard Herriot, CHU, Lyon, France.
Département d'Hématologie, Hôpital Saint Antoine, Paris, France.
Université Pierre & Marie Curie, Paris, France.
Centre de Recherche Saint-Antoine, INSERM UMR_S 938, Paris, France.

Yasuo Morishima (Y)

Division of Epidemiology and Prevention, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya, Japan.

Gérard Socié (G)

Labex TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.
Société Francophone de Greffe de Moelle et de Thérapie Cellulaire (SFGM-TC), Hôpital Edouard Herriot, CHU, Lyon, France.
Service d'Hématologie Adulte, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.

Seiamak Bahram (S)

Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France. siamak@unistra.fr.
Labex TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France. siamak@unistra.fr.
INSERM Franco-Japanese Nextgen HLA Laboratory, Strasbourg, France. siamak@unistra.fr.
INSERM Franco-Japanese Nextgen HLA Laboratory, Nagano, Japan. siamak@unistra.fr.
Laboratoire d'Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, France. siamak@unistra.fr.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH