N-Doping of Polyaromatic Capsules: Small Cavity Modification Leads to Large Change in Host-Guest Interactions.

fluorescence host-guest systems noncovalent interactions polyaromatics supramolecular chemistry

Journal

Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543

Informations de publication

Date de publication:
13 07 2020
Historique:
received: 21 03 2020
revised: 02 04 2020
pubmed: 16 4 2020
medline: 16 4 2020
entrez: 16 4 2020
Statut: ppublish

Résumé

To gain insight into the host functions of a nanocavity encircled by both polyaromatic panels and heteroatoms, nitrogen-doped polyaromatic capsules were successfully synthesized from metal ions and pyridine-embedded, bent anthracene-based ligands. The new capsules display unique host-guest interactions in the isolated cavities, which are distinct from those of the undoped analogues. Besides the inclusion of Ag

Identifiants

pubmed: 32291946
doi: 10.1002/anie.202004168
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

11881-11885

Informations de copyright

© 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

Références

 
M. D. Watson, A. Fechtenkötter, K. Müllen, Chem. Rev. 2001, 101, 1267-1300;
L. Chen, Y. Hernandez, X. Feng, K. Müllen, Angew. Chem. Int. Ed. 2012, 51, 7640-7654;
Angew. Chem. 2012, 124, 7758-7773.
 
S. M. Draper, D. J. Gregg, R. Madathil, J. Am. Chem. Soc. 2002, 124, 3486-3487;
Q. Tan, S. Higashibayashi, S. Karanjit, H. Sakurai, Nat. Commun. 2012, 3, 891;
S. Ito, Y. Tokimaru, K. Nozaki, Angew. Chem. Int. Ed. 2015, 54, 7256-7260;
Angew. Chem. 2015, 127, 7364-7368;
H. Yokoi, Y. Hiraoka, S. Hiroto, D. Sakamaki, S. Seki, H. Shinokubo, Nat. Commun. 2015, 6, 8215;
X. Y. Wang, M. Richter, Y. He, J. Björk, A. Riss, R. Rajesh, M. Garnica, F. Hennersdorf, J. J. Weigand, A. Narita, R. Berger, X. Feng, W. Auwärter, J. V. Barth, C. A. Palma, K. Müllen, Nat. Commun. 2017, 8, 1948.
 
X. Wang, G. Sun, P. Routh, D. H. Kim, W. Huang, P. Chen, Chem. Soc. Rev. 2014, 43, 7067-7098;
X. Wang, X. Yao, A. Narita, K. Müllen, Acc. Chem. Res. 2019, 52, 2491-2505.
Only mono-nitrogen-doped fullerenes have been prepared so far. See:
T. Pradeep, V. Vijayakrishnan, A. K. Santra, C. N. R. Rao, J. Phys. Chem. 1991, 95, 10564-10565;
J. C. Hummelen, B. Knight, J. Paviovich, R. Gonzalez, F. Wudl, Science 1995, 269, 1554-1556;
O. Vostrowsky, A. Hirsch, Chem. Rev. 2006, 106, 5191-5207;
Y. Hashikawa, Y. Murata, J. Am. Chem. Soc. 2017, 139, 18468-18471.
Recent reviews on coordination cages and capsules:
T. R. Cook, P. J. Stang, Chem. Rev. 2015, 115, 7001-7045;
C. J. Brown, F. D. Toste, R. G. Bergman, K. N. Raymond, Chem. Rev. 2015, 115, 3012-3035;
L.-J. Chen, H.-B. Yang, M. Shionoya, Chem. Soc. Rev. 2017, 46, 2555-2576;
M. Yoshizawa, M. Yamashina, Chem. Lett. 2017, 46, 163-171;
I. Sinha, P. S. Mukherjee, Inorg. Chem. 2018, 57, 4205-4221;
F. J. Rizzuto, L. K. S. von Krbek, J. R. Nitschke, Nat. Rev. Chem. 2019, 3, 204-222;
H. Sepehrpour, W. Fu, Y. Sun, P. J. Stang, J. Am. Chem. Soc. 2019, 141, 14005-14020.
 
N. Kishi, Z. Li, K. Yoza, M. Akita, M. Yoshizawa, J. Am. Chem. Soc. 2011, 133, 11438-11441;
M. Yamashina, Y. Sei, M. Akita, M. Yoshizawa, Nat. Commun. 2014, 5, 4662.
 
M. Yamashina, M. Sartin, Y. Sei, M. Akita, S. Takeuchi, T. Tahara, M. Yoshizawa, J. Am. Chem. Soc. 2015, 137, 9266-9269;
S. Matsuno, M. Yamashina, Y. Sei, M. Akita, A. Kuzume, K. Yamamoto, M. Yoshizawa, Nat. Commun. 2017, 8, 749;
M. Yamashina, M. Akita, T. Hasegawa, S. Hayashi, M. Yoshizawa, Sci. Adv. 2017, 3, e1701126;
M. Yamashina, S. Kusaba, M. Akita, T. Kikuchi, M. Yoshizawa, Nat. Commun. 2018, 9, 4227;
M. Yamashina, T. Tsutsui, Y. Sei, M. Akita, M. Yoshizawa, Sci. Adv. 2019, 5, eaav3179;
K. Niki, T. Tsutsui, M. Yamashina, M. Akita, M. Yoshizawa, Angew. Chem. Int. Ed. 2020, https://doi.org/10.1002/anie.202003253;
Angew. Chem. 2020, https://doi.org/10.1002/ange.202003253.
 
J. E. M. Lewis, E. L. Gavey, S. A. Cameron, J. D. Crowley, Chem. Sci. 2012, 3, 778-784;
K. Harris, Q.-F. Sun, S. Sato, M. Fujita, J. Am. Chem. Soc. 2013, 135, 12497-12499;
V. Martí-Centelles, A. L. Lawrence, P. J. Lusby, J. Am. Chem. Soc. 2018, 140, 2862-2868.
The difference in molecular weight between 2 aN and 2 aCH is <1 %. The optimized structure of 2 aCH provides a spherical cavity with a Pd⋅⋅⋅Pd distance of 1.4 nm and a volume of 550 Å3 (Figure 2 e).
See the Supporting Information. The optimized structures were obtained by DFT calculations (CAM-B3LYP/LanL2DZ,6-31G(d) level of theory). The cavity diameter and volume of the preliminary crystal structure of 2 cN (M=PtII, R=-OCH2CH2OCH3, BF4− counterions) are comparable to those of the optimized structure of 2 aN (Figure 2 d; see Figure S51; CCDC 1995052 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.).
 
Ag+ guests adopt a two-coordinate linear geometry with the N-atom of the pyridine spacers of 2 bN and, most probably, the O-atom of solvent (water). In 1H NMR spectra, proton Hf acts as a “reporter” for the successful uptake of guests into the host cavity;
N. Kishi, M. Akita, M. Kamiya, S. Hayashi, H.-F. Hsu, M. Yoshizawa, J. Am. Chem. Soc. 2013, 135, 12976-12979;
K. Omoto, S. Tashiro, M. Kuritani, M. Shionoya, J. Am. Chem. Soc. 2014, 136, 17946-17949.
 
PtII-capsules 2 bN and 2 bCH display no host ability toward C60 even at 80 °C, because of the relatively strong PtII-pyridine bonds;
N-doped capsule 2 bN is an analogue of 2 aN, in which the PdII ions and the short side chains (m=1) are replaced by PtII ions and long side chains (m=3), respectively (Figure 1 b).
2 bN is well soluble in water.
The optimized structures of 2 aN and 2 aCH are rather different in the dihedral angles between the central pyridine or benzene rings and the adjacent anthracene rings (i.e., φ=76.6° for 2 aN and φ=73.1° for 2 aCH). The tightly packed host-guest structure of 2 aN⋅C60 most probably destabilizes the LUMO level of encapsulated C60.
 
K. Ono, J. K. Klosterman, M. Yoshizawa, K. Sekiguchi, T. Tahara, M. Fujita, J. Am. Chem. Soc. 2009, 131, 12526-12527;
P. P. Neelakandan, A. Jiménez, J. R. Nitschke, Chem. Sci. 2014, 5, 908-915;
B. Roy, A. K. Ghosh, S. Srivastava, P. D'Silva, P. S. Mukherjee, J. Am. Chem. Soc. 2015, 137, 11916-11919.
 
The PdII capsules 2 aN and 2 aCH fully quench the guest fluorescence upon encapsulation because of the heavy-atom effect.
Fluorescence lifetimes of (3)2 within 2 bN and 2 bCH (1.8 and 2.5 ns, respectively) are slightly shorter than that of free 3 (see Figure S39c).
C. Saudan, N. Baume, N. Robinson, L. Avois, P. Mangin, M. Saugy, Br. J. Sports Med. 2006, 40, i21-i24.
 
K. Yazaki, L. Catti, M. Yoshizawa, Chem. Commun. 2018, 54, 3195-3206;
M. Yoshizawa, L. Catti, Acc. Chem. Res. 2019, 52, 2392-2404;
N. Kishida, K. Matsumoto, Y. Tanaka, M. Akita, H. Sakurai, M. Yoshizawa, J. Am. Chem. Soc. 2020, https://doi.org/10.1021/jacs.0c02932.

Auteurs

Hiroki Dobashi (H)

Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan.

Lorenzo Catti (L)

WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.

Yuya Tanaka (Y)

Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan.

Munetaka Akita (M)

Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan.

Michito Yoshizawa (M)

Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan.

Classifications MeSH