Impact of exosome-loaded chitosan hydrogel in wound repair and layered dermal reconstitution in mice animal model.


Journal

Journal of biomedical materials research. Part A
ISSN: 1552-4965
Titre abrégé: J Biomed Mater Res A
Pays: United States
ID NLM: 101234237

Informations de publication

Date de publication:
01 11 2020
Historique:
received: 14 01 2020
revised: 20 03 2020
accepted: 28 03 2020
pubmed: 23 4 2020
medline: 9 11 2021
entrez: 23 4 2020
Statut: ppublish

Résumé

Combat or burn injuries are associated with a series of risks, such as microbial infection, an elevated level of inflammatory response, and pathologic scar tissue formation, which significantly postpone wound healing and also lead to impaired repair. Skin engineering for wound healing requires a biomimetic dressing substrate with ideal hydrophilicity, holding antioxidant and antimicrobial properties. In addition, available bioactive specification is required to reduce scar formation, stimulate angiogenesis, and improve wound repair. In this study, we successfully fabricated chitosan (Ch)-based hydrogel enriched with isolated exosome (EXO) from easy-accessible stem cells, which could promote fibroblast cell migration and proliferation in vitro. Full-thickness excisional wound model was used to investigate the in vivo dermal substitution ability of the fabricated hydrogel composed Ch and EXO substrates. Our finding confirmed that the wounds covered with Ch scaffold containing isolated EXO have nearly 83.6% wound closure ability with a high degree of re-epithelialization, whereas sterile gauze showed 51.5% of reduction in wound size. In summary, obtained results imply that Ch-glycerol-EXO hydrogel construct can be utilized at the full-thickness skin wound substitution and skin tissue engineering.

Identifiants

pubmed: 32319166
doi: 10.1002/jbm.a.36959
doi:

Substances chimiques

Biocompatible Materials 0
Hydrogels 0
Chitosan 9012-76-4

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2138-2149

Informations de copyright

© 2020 Wiley Periodicals LLC.

Références

Alizadeh, R., Bagher, Z., Kamrava, S. K., Falah, M., Ghasemi Hamidabadi, H., Eskandarian Boroujeni, M., … Komeili, A. (2019). Differentiation of human mesenchymal stem cells (MSC) to dopaminergic neurons: A comparison between Wharton's Jelly and olfactory mucosa as sources of MSCs. Journal of Chemical Neuroanatomy, 96, 126-133.
Alizadeh, R., Zarrintaj, P., Kamrava, S. K., Bagher, Z., Farhadi, M., Heidari, F., … Saeb, M. R. (2019). Conductive hydrogels based on agarose/alginate/chitosan for neural disorder therapy. Carbohydrate Polymers, 224, 115161.
Alizadeh, R., Kamrava, S. K., Bagher, Z., Farhadi, M., Falah, M., Moradi, F., … Komeili. A., (2019). Human olfactory stem cells: As a promising source of dopaminergic neuron-like cells for treatment of Parkinson's disease. Neuroscience Letters, 696, 52-59.
Andreu, Z., & Yáñez-Mó, M. (2014). Tetraspanins in extracellular vesicle formation and function. Frontiers in Immunology, 5, 442.
Atoufi, Z., Kamrava, S. K., Davachi, S. M., Hassanabadi, M., Saeedi Garakani, S., Alizadeh, R., … Hashemi Motlagh, G. (2019). Injectable PNIPAM/hyaluronic acid hydrogels containing multipurpose modified particles for cartilage tissue engineering: Synthesis, characterization, drug release and cell culture study. International Journal of Biological Macromolecules, 139, 1168-1181.
Bagher, Z., Ehterami, A., Nasrolahi, M., Azimi, M., & Salehi, M. (2020). Hesperidin promotes peripheral nerve regeneration based on tissue engineering strategy using alginate/chitosan hydrogel: in vitro and in vivo study. International Journal of Polymeric Materials and Polymeric Biomaterials, 1-10. https://doi.org/10.1080/00914037.2020.1713781
Bagher, Z., Ehterami, A., Safdel, M. H., Khastar, H., Semiari, H., Asefnejad, A., … Salehi, M. (2020). Wound healing with alginate/chitosan hydrogel containing hesperidin in rat model. Journal of Drug Delivery Science and Technology, 55, 101379.
Bahrami, N., Bayat, M., Ai, A., Khanmohammadi, M., Ai. J., Ahmadi, A., … Rahimi, A. (2018). Differentiation of periodontal ligament stem cells into osteoblasts on hybrid alginate/polyvinyl alcohol/hydroxyapatite nanofibrous scaffolds. Archives of Neuroscience, 5(4). https://doi.org/10.5812/ans.74267
Cooper, D. R., Wang, C., Patel, R., Trujillo, A., Patel, N. A., Prather, J., … Wu, M. H. (2018). Human adipose-derived stem cell conditioned media and exosomes containing malat1 promote human dermal fibroblast migration and ischemic wound healing. Advances in Wound Care, 7(9), 299-308.
DiPietro, L. A. (2016). Angiogenesis and wound repair: When enough is enough. Journal of Leukocyte Biology, 100(5), 979-984.
Ebrahimi-Barough, S., Kouchesfahani, H. M., Ai, J., & Massumi, M. (2013). Differentiation of human endometrial stromal cells into oligodendrocyte progenitor cells (OPCs). Journal of Molecular Neuroscience, 51(2), 265-273.
Fitzsimmons, R. E. B., Mazurek, M.S., Soos, A., & Simmons. C.A. (2018). Mesenchymal stromal/stem cells in regenerative medicine and tissue engineering. Stem Cells International, 2018, 1-16.
Garakani, S. S., Khanmohammadi, M., Atoufi, Z., Kamrava, S. K., Setayeshmehr, M., Alizadeh, R., … Abbaspourrad, A. (2020). Fabrication of chitosan/agarose scaffolds containing extracellular matrix for tissue engineering applications. International Journal of Biological Macromolecules, 143, 533-545.
Goodarzi, A., Khanmohammadi, M., Barough, S. E., Azami, M., Amani, A., Baradaran-Rafii, A., … Jafar Ai. (2019). Alginate-based hydrogel containing taurine-loaded chitosan nanoparticles in biomedical application. Archives of Neuroscience, 6(2). https://doi.org/10.5812/ans.86349
Grainger, D. W. (2015). Fat prospects for healing cutaneous wounds: New activities under the sheets. Diabetes, 64(8), 2717-2719.
Hu, L., Wang, J., Zhou, X., Xiong, Z., Zhao, J., Yu, R., … Chen, L. (2016). Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts. Scientific Reports, 6, 32993.
Hu, S., Li, Z., Cores, J., Huang, K., Su, T., Dinh, P. U., & Cheng, K. (2019). Needle-free injection of exosomes derived from human dermal fibroblast spheroids ameliorates skin photoaging. ACS Nano, 13(10), 11273-11282.
Khanmohammadi, M., Dastjerdi, M. B., Ai, A., Ahmadi, A., Godarzi, A., Rahimi, A., & Ai, J. (2018). Horseradish peroxidase-catalyzed hydrogelation for biomedical applications. Biomaterials Science, 6(6), 1286-1298.
Khanmohammadi, M., Nemati, S., Ai, J., & Khademi, F. (2019). Multipotency expression of human adipose stem cells in filament-like alginate and gelatin derivative hydrogel fabricated through visible light-initiated crosslinking. Materials Science and Engineering: C, 103, 109808.
Khanmohammadi, M., Sakai, S., & Taya, M. (2019). Characterization of encapsulated cells within hyaluronic acid and alginate microcapsules produced via horseradish peroxidase-catalyzed crosslinking. Journal of Biomaterials Science, Polymer Edition, 30(4), 295-307.
Khoshfetrat, A. B., Khanmohammadi, M., Sakai, S., & Taya, M. (2016). Enzymatically-gellable galactosylated chitosan: Hydrogel characteristics and hepatic cell behavior. International Journal of Biological Macromolecules, 92, 892-899.
Kim, G. O., Kim, N., Kim, D. Y., Kwon, J. S., & Min, B.-H. (2012). An electrostatically crosslinked chitosan hydrogel as a drug carrier. Molecules, 17(12), 13704-13711.
Lai, R. C., Arslan, F., Lee, M. M., Sze, N. S. K., Choo, A., Chen, T. S., … Lim, S. K. (2010). Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Research, 4(3), 214-222.
Liu, H., Wang, C., Li, C., Qin, Y., Wang, Z., Yang, F., … Wang, J. (2018). A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing. RSC Advances, 8(14), 7533-7549.
Mansbridge, J. (1998). Skin substitutes to enhance wound healing. Expert Opinion on Investigational Drugs, 7(5), 803-809.
Mansbridge, J. N. (2009). Tissue-engineered skin substitutes in regenerative medicine. Current Opinion in Biotechnology, 20(5), 563-567.
Nakamura, K., Jinnin, M., Harada, M., Kudo, H., Nakayama, W., Inoue, K., … Ihn, H. (2016). Altered expression of CD63 and exosomes in scleroderma dermal fibroblasts. Journal of Dermatological Science, 84(1), 30-39.
Newberry, C. I., Thomas, J. R., & Cerrati, E. W. (2018). Facial scar improvement procedures. Facial Plastic Surgery, 34(05), 448-457.
Nooshabadi, V. (2019). Endometrial mesenchymal stem cell-derived exosome promote endothelial cell angiogenesis in a dose dependent manner: A new perspective on regenerative medicine and cell-free therapy. Archives of Neuroscience, 6(4), e94041 (In Press).
Pols, M. S., & Klumperman, J. (2009). Trafficking and function of the tetraspanin CD63. Experimental Cell Research, 315(9), 1584-1592.
Rohaeti, E., Laksono, E. W., & Rakhmawati, A. (2016). Bacterial cellulose from rice waste water and its composite which are deposited nanoparticle as an antimicrobial material. Alchemy jurnal penelitian kimia, 12(1), 70-87.
Roşca, A., Ţuţuianu, R., & Titorencu, I. D. (2018). Mesenchymal stromal cells derived exosomes as tools for chronic wound healing therapy. Romanian Journal of Morphology and Embryology, 59(3), 655-662.
Shabbir, A., Cox, A., Rodriguez-Menocal, L., Salgado, M., & Badiavas, E. V. (2015). Mesenchymal stem cell exosomes induce proliferation and migration of normal and chronic wound fibroblasts, and enhance angiogenesis in vitro. Stem Cells and Development, 24(14), 1635-1647.
Shafei, S., Khanmohammadi, M., Heidari, R., Ghanbari, H., Taghdiri Nooshabadi, V., Farzamfar, S., … Tavoosidana, G. (2020). Exosome loaded alginate hydrogel promotes tissue regeneration in full-thickness skin wounds: An in vivo study. Journal of Biomedical Materials Research Part A, 108(3), 545-556.
Simorgh, S., Alizadeh, R., Eftekharzadeh, M., Haramshahi, S. M. A., Milan, P. B., Doshmanziari, M., … Moradi, F. (2019). Olfactory mucosa stem cells: An available candidate for the treatment of the Parkinson's disease. Journal of Cellular Physiology, 234(12), 23763-23773.
Tao, S. C., Guo, S. C., Li, M., Ke, Q. F., Guo, Y. P., & Zhang, C. Q. (2017). Chitosan wound dressings incorporating exosomes derived from microRNA-126-overexpressing synovium mesenchymal stem cells provide sustained release of exosomes and heal full-thickness skin defects in a diabetic rat model. Stem Cells Translational Medicine, 6(3), 736-747.
Zahiri, M., Khanmohammadi, M., Goodarzi, A., Ababzadeh, S., Sagharjoghi Farahani, M., Mohandesnezhad, S., … Ai, J. (2019). Encapsulation of curcumin loaded chitosan nanoparticle within poly (ε-caprolactone) and gelatin fiber mat for wound healing and layered dermal reconstitution. International Journal of Biological Macromolecules, 153.
Zhang, B., Wu, X., Zhang, X., Sun, Y., Yan, Y., Shi, H., … Xu, W. (2015). Human umbilical cord mesenchymal stem cell exosomes enhance angiogenesis through the Wnt4/β-catenin pathway. Stem Cells Translational Medicine, 4(5), 513-522.
Zhang, J., Guan, J., Niu, X., Hu, G., Guo, S., Li, Q., … Wang, Y. (2015). Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis. Journal of Translational Medicine, 13(1), 49.

Auteurs

Vajihe Taghdiri Nooshabadi (VT)

Department of Tissue Engineering and Applied Cell Sciences, School of medicine, Semnan University of Medical Sciences, Semnan, Iran.
Department of Applied Cell Sciences, Kashan University of Medical Sciences, Kashan, Iran.
Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.

Mehdi Khanmohamadi (M)

Skull Base Research Center, The Five Senses Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran.

Elahe Valipour (E)

Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.

Shadi Mahdipour (S)

Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.

Amir Salati (A)

Department of Tissue Engineering and Applied Cell Sciences, School of medicine, Semnan University of Medical Sciences, Semnan, Iran.

Ziba Veisi Malekshahi (ZV)

Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.

Shilan Shafei (S)

Department of Molecular Medicine, School of Advanced Technologies in Medicine, International campus Tehran University of Medical Sciences, Tehran, Iran.

Elahe Amini (E)

Skull Base Research Center, The Five Senses Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran.

Saeed Farzamfar (S)

Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.

Jafar Ai (J)

Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH