Cardiogenesis with a focus on vasculogenesis and angiogenesis.


Journal

Anatomia, histologia, embryologia
ISSN: 1439-0264
Titre abrégé: Anat Histol Embryol
Pays: Germany
ID NLM: 7704218

Informations de publication

Date de publication:
Sep 2020
Historique:
received: 27 08 2019
revised: 04 02 2020
accepted: 20 02 2020
pubmed: 23 4 2020
medline: 3 9 2021
entrez: 23 4 2020
Statut: ppublish

Résumé

The initial intraembryonic vasculogenesis occurs in the cardiogenic mesoderm. Here, a cell population of proendocardial cells detaches from the mesoderm that subsequently generates the single endocardial tube by forming vascular plexuses. In the course of embryogenesis, the endocardium retains vasculogenic, angiogenic and haematopoietic potential. The coronary blood vessels that sustain the rapidly expanding myocardium develop in the course of the formation of the cardiac loop by vasculogenesis and angiogenesis from progenitor cells of the proepicardial serosa at the venous pole of the heart as well as from the endocardium and endothelial cells of the sinus venosus. Prospective coronary endothelial cells and progenitor cells of the coronary blood vessel walls (smooth muscle cells, perivascular cells) originate from different cell populations that are in close spatial as well as regulatory connection with each other. Vasculo- and angiogenesis of the coronary blood vessels are for a large part regulated by the epicardium and epicardium-derived cells. Vasculogenic and angiogenic signalling pathways include the vascular endothelial growth factors, the angiopoietins and the fibroblast growth factors and their receptors.

Identifiants

pubmed: 32319704
doi: 10.1111/ahe.12549
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

643-655

Subventions

Organisme : Freie Universität Berlin

Informations de copyright

© 2019 The Authors. Anatomia, Histologia, Embryologia published by Wiley-VCH GmbH.

Références

Anderson, R. H., Brown, N. A., & Moorman, A. F. M. (2006). Development and structures of the venous pole of the heart. Developmental Dynamics, 235(1), 2-9. https://doi.org/10.1002/dvdy.20578
Arima, Y., Miyagawa-Tomita, S., Maeda, K., Asai, R., Seya, D., Minoux, M., … Kurihara, H. (2012). Preotic neural crest cells contribute to coronary artery smooth muscle involving endothelin signalling. Nature Communications, 3, 1267. https://doi.org/10.1038/ncomms2258
Arita, Y., Nakaoka, Y., Matsunaga, T., Kidoya, H., Yamamizu, K., Arima, Y., … Komuro, I. (2014). Myocardium-derived angiopoietin-1 is essential for coronary vein formation in the developing heart. Nature Communications, 5, 4552. https://doi.org/10.1038/ncomms5552
Augustin, H. G., Koh, G. Y., Thurston, G., & Alitalo, K. (2009). Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nature Reviews Molecular Cell Biology, 10(3), 165-177. https://doi.org/10.1038/nrm2639
Baik, J., Magli, A., Tahara, N., Swanson, S. A., Koyano-Nakagawa, N., Borges, L., … Perlingeiro, R. C. R. (2016). Endoglin integrates BMP and Wnt signalling to induce haematopoiesis through JDP2. Nature Communications, 7, 13101-13146. https://doi.org/10.1038/ncomms13101
Bi, W. Z., Drake, C. J., & Schwarz, J. J. (1999). The transcription factor MEF2C-null mouse exhibits complex vascular malformations and reduced cardiac expression of angiopoietin 1 and VEGF. Developmental Biology, 211(2), 255-267. https://doi.org/10.1006/dbio.1999.9307
Bondue, A., Lapouge, G., Paulissen, C., Semeraro, C., Lacovino, M., Kyba, M., & Blanpain, C. (2008). Mesp1 acts as a master regulator of multipotent cardiovascular progenitor specification. Cell Stem Cell, 3(1), 69-84. https://doi.org/10.1016/j.stem.2008.06.009
Borasch, K. (2019). Neue Erkenntnisse der Embryologie zur Entwicklung des Herzens. Eine Literaturstudie. Dissertation thesis in German, Institute of Veterinary Anatomy, Department of Veterinary Medicine, Freie Universität Berlin; German language, 272 pages, 71 figures.
Bussmann, J., Bakkers, J., & Schulte-Merker, S. (2007). Early endocardial morphogenesis requires Scl/Tal1. PLoS Genetics, 3(8), 1425-1437. https://doi.org/10.1371/journal.pgen.0030140
Camp, E., Dietrich, S., & Munsterberg, A. (2012). Fate mapping identifies the origin of SHF/AHF progenitors in the chick primitive streak. PLoS ONE, 7(12), e51948. https://doi.org/10.1371/journal.pone.0051948
Cano, E., Carmona, R., Velecela, V., Martinez-Estrada, O., & Munoz-Chapuli, R. (2015). The proepicardium keeps a potential for glomerular marker expression which supports its evolutionary origin from the pronephros. Evolution & Development, 17(4), 224-230. https://doi.org/10.1111/ede.12130
Cavallero, S., Shen, H., Yi, C., Lien, C. L., Kumar, S. R., & Sucov, H. M. (2015). CXCL12 signaling is essential for maturation of the ventricular coronary endothelial plexus and establishment of functional coronary circulation. Developmental Cell, 33(4), 469-477. https://doi.org/10.1016/j.devcel.2015.03.018
Chan, S.-S.-K., Hagen, H. R., Swanson, S. A., Stewart, R., Boll, K. A., Aho, J., … Kyba, M. (2016). Development of bipotent cardiac/skeletal myogenic progenitors from MESP1+ mesoderm. Stem Cell Reports, 6(1), 26-34. https://doi.org/10.1016/j.stemcr.2015.12.003
Chan, S. S. K., Shi, X. Z., Toyama, A., Arpke, R. W., Dandapat, A., Iacovino, M., … Kyba, M. (2013). Mesp1 patterns mesoderm into cardiac, hematopoietic, or skeletal myogenic progenitors in a context-dependent manner. Cell Stem Cell, 12(5), 587-601. https://doi.org/10.1016/j.stem.2013.03.004
Chen, H. I., Poduri, A., Numi, H., Kivela, R., Saharinen, P., McKay, A. S., … Red-Horse, K. (2014a). VEGF-C and aortic cardiomyocytes guide coronary artery stem development. Journal of Clinical Investigation, 124(11), 4899-4914. https://doi.org/10.1172/jci77483
Chen, H. I., Sharma, B., Akerberg, B. N., Numi, H. J., Kivela, R., Saharinen, P., … Red-Horse, K. (2014b). The sinus venosus contributes to coronary vasculature through VEGFC-stimulated angiogenesis. Development, 141(23), 4500-4512. https://doi.org/10.1242/dev.113639
Christoffels, V. M., Grieskamp, T., Norden, J., Mommersteeg, M. T. M., Rudat, C., & Kispert, A. (2009). Tbx18 and the fate of epicardial progenitors. Nature, 458(7240), E8-E9. https://doi.org/10.1038/nature07916
Cohen-Gould, L., & Mikawa, T. (1996). The fate diversity of mesodermal cells within the heart field during chicken early embryogenesis. Developmental Biology, 177(1), 265-273. https://doi.org/10.1006/dbio.1996.0161
Cossette, S., & Misra, R. (2011). The identification of different endothelial cell populations within the mouse proepicardium. Developmental Dynamics, 240(10), 2344-2353. https://doi.org/10.1002/dvdy.22724
Costello, I., Pimeisl, I. M., Drager, S., Bikoff, E. K., Robertson, E. J., & Arnold, S. J. (2011). The T-box transcription factor Eomesodermin acts upstream of Mesp1 to specify cardiac mesoderm during mouse gastrulation. Nature Cell Biology, 13(9), 1084-1108. https://doi.org/10.1038/ncb2304
De la Pompa, J. L., Timmerman, L. A., Takimoto, H., Yoshida, H., Elia, A. J., Samper, E., … Mak, T. W. (1998). Role of the NF-ATc transcription factor in morphogenesis of cardiac valves and septum. Nature, 392(6672), 182-186. https://doi.org/10.1038/32419
De Ruiter, M. C., Poelmann, R. E., Mentink, M. M. T., Vaniperen, L., & Gittenbergerdegroot, A. C. (1993). Early formation of the vascular system in quail embryos. Anatomical Record, 235(2), 261-274. https://doi.org/10.1002/ar.1092350210
De Ruiter, M. C., Poelmann, R. E., Vanderplasdevries, I., Mentink, M. M. T., & Gittenbergerdegroot, A. C. (1992). The development of the myocardium and endocardium in mouse embryos - Fusion of two heart tubes. Anatomy and Embryology, 185(5), 461-473.
Dehaan, R. L. (1964). Cell interactions and oriented movements during development. The Journal of Experimental Zoology, 157, 127-138. https://doi.org/10.1002/jez.1401570118
Del Monte, G., Casanova, J. C., Guadix, J. A., MacGrogan, D., Burch, J. B. E., Perez-Pomares, J. M., & de la Pompa, J. L. (2011). Differential notch signaling in the epicardium is required for cardiac inflow development and coronary vessel morphogenesis. Circulation Research, 108(7), 824-836. https://doi.org/10.1161/circresaha.110.229062
Dettman, R. W., Denetclaw, W., Ordahl, C. P., & Bristow, J. (1998). Common epicardial origin of coronary vascular smooth muscle, perivascular fibroblasts, and intermyocardial fibroblasts in the avian heart. Developmental Biology, 193(2), 169-181. https://doi.org/10.1006/dbio.1997.8801
Devine, W. P., Wythe, J. D., George, M., Koshiba-Takeuchi, K., & Bruneau, B. G. (2014). Early patterning and specification of cardiac progenitors in gastrulating mesoderm. eLife, 3, e03848. https://doi.org/10.7554/eLife.03848
Domenga, V., Fardoux, P., Lacombe, P., Monet, M., Maciazek, J., Krebs, L. T., … Joutel, A. (2004). Notch3 is required for arterial identity and maturation of vascular smooth muscle cells. Genes & Development, 18(22), 2730-2735. https://doi.org/10.1101/gad.308904
Drake, C. J., & Fleming, P. A. (2000). Vasculogenesis in the day 6.5 to 9.5 mouse embryo. Blood, 95(5), 1671-1679.
Dyer, L., Wu, Y. X., Moser, M., & Patterson, C. (2014). BMPER-induced BMP signaling promotes coronary artery remodeling. Developmental Biology, 386(2), 385-394. https://doi.org/10.1016/j.ydbio.2013.12.019
Ferdous, A., Caprioli, A., Iacovino, M., Martin, C. M., Morris, J., Richardson, J. A., … Garry, D. J. (2009). Nkx2-5 transactivates the Ets-related protein 71 gene and specifies an endothelial/endocardial fate in the developing embryo. Proceedings of the National Academy of Sciences of the United States of America, 106(3), 814-819. https://doi.org/10.1073/pnas.0807583106
Fischer, A., Schumacher, N., Maier, M., Sendtner, M., & Gessler, M. (2004). The Notch target genes Hey1 and Hey2 are required for embryonic vascular development. Genes & Development, 18(8), 901-911. https://doi.org/10.1101/gad.291004
Garcia-Martinez, V., & Schoenwolf, G. C. (1993). Primitive-streak origin of the cardiovascular-system in avian embryos. Developmental Biology, 159(2), 706-719. https://doi.org/10.1006/dbio.1993.1276
Gonzalez-Iriarte, M., Carmona, R., Perez-Pomares, J. M., Macias, D., Costell, M., & Munoz-Chapuli, R. (2003). Development of the coronary arteries in a murine model of transposition of great arteries. Journal of Molecular and Cellular Cardiology, 35(7), 795-802. https://doi.org/10.1016/s0022-2828(03)00134-2
Grieskamp, T., Rudat, C., Ludtke, T. H. W., Norden, J., & Kispert, A. (2011). Notch signaling regulates smooth muscle differentiation of epicardium-derived cells. Circulation Research, 108(7), 813-823. https://doi.org/10.1161/circresaha.110.228809
Guadix, J. A., Carmona, R., Munoz-Chapuli, R., & Perez-Pomares, J. M. (2006). In vivo and in vitro analysis of the vasculogenic potential of avian proepicardial and epicardial cells. Developmental Dynamics, 235(4), 1014-1026. https://doi.org/10.1002/dvdy.20685
Haack, T., & Abdelilah-Seyfried, S. (2016). The force within: Endocardial development, mechanotransduction and signalling during cardiac morphogenesis. Development, 143(3), 373-386. https://doi.org/10.1242/dev.131425
Hara, Y., Wake, K., Inoue, K., Kuroda, N., Sato, A., Inamatsu, M., … Sato, T. (2016). Development of the heart endocardium at an early stage of chick embryos evaluated at light- and electron-microscopic levels. Anatomical Record-Advances in Integrative Anatomy and Evolutionary Biology, 299(8), 1080-1089. https://doi.org/10.1002/ar.23372
Harris, I. S., & Black, B. L. (2010). Development of the Endocardium. Pediatric Cardiology, 31(3), 391-399. https://doi.org/10.1007/s00246-010-9642-8
Hartenstein, V., & Mandal, L. (2006). The blood/vascular system in a phylogenetic perspective. BioEssays, 28(12), 1203-1210. https://doi.org/10.1002/bies.20497
Hatzistergos, K. E., Takeuchi, L. M., Saur, D., Seidler, B., Dymecki, S. M., Mai, J. J., … Hare, J. M. (2015). cKit(+) cardiac progenitors of neural crest origin. Proceedings of the National Academy of Sciences of the United States of America, 112(42), 13051-13056. https://doi.org/10.1073/pnas.1517201112
Hirakow, R. (1983). Development of the cardiac blood vessels in staged human embryos. Acta Anatomica, 115(3), 220-230. https://doi.org/10.1159/000145693
Hofmann, J. J., Briot, A., Enciso, J., Zovein, A. C., Ren, S. X., Zhang, Z. W., … Iruela-Arispe, M. L. (2012). Endothelial deletion of murine Jag1 leads to valve calcification and congenital heart defects associated with Alagille syndrome. Development, 139(23), 4449-4460. https://doi.org/10.1242/dev.084871
Hu, Y., Belyea, B. C., Li, M. H., Gothert, J. R., Gomez, A., & Sequeira-Lopez, M. L. S. (2017). Identification of cardiac hemo-vascular precursors and their requirement of sphingosine-1-phosphate receptor 1 for heart development. Scientific Reports, 7, 45205. https://doi.org/10.1038/srep45205
Ivins, S., Chappell, J., Vernay, B., Suntharalingham, J., Martineau, A., Mohun, T. J., & Scambler, P. J. (2015). The CXCL12/CXCR4 axis plays a critical role in coronary artery development. Developmental Cell, 33(4), 455-468. https://doi.org/10.1016/j.devcel.2015.03.026
Katz, T. C., Singh, M. K., Degenhardt, K., Rivera-Feliciano, J., Johnson, R. L., Epstein, J. A., & Tabin, C. J. (2012). Distinct compartments of the proepicardial organ give rise to coronary vascular endothelial cells. Developmental Cell, 22(3), 639-650. https://doi.org/10.1016/j.devcel.2012.01.012
Kertesz, N., Wu, J., Chen, T. H. P., Sucov, H. M., & Wu, H. (2004). The role of erythropoietin in regulating angiogenesis. Developmental Biology, 276(1), 101-110. https://doi.org/10.1016/j.ydbio.2004.08.025
Kirby, M. L., Gale, T. F., & Stewart, D. E. (1983). Neural crest cells contribute to normal aorticopulmonary septation. Science, 220(4601), 1059-1061. https://doi.org/10.1126/science.6844926
Kirby, M. L., Lawson, A., Stadt, H. A., Kumiski, D. H., Wallis, K. T., McCraney, E., … Schoenwolf, G. C. (2003). Hensen's node gives rise to the ventral midline of the foregut: Implications for organizing head and heart development. Developmental Biology, 253(2), 175-188. https://doi.org/10.1016/s0012-1606(02)00024-6
Lavine, K. J., Long, F. X., Choi, K., Smith, C., & Ornitz, D. M. (2008). Hedgehog signaling to distinct cell types differentially regulates coronary artery and vein development. Development, 135(18), 3161-3171. https://doi.org/10.1242/dev.019919
Lavine, K. J., White, A. C., Park, C., Smith, C. S., Choi, K., Long, F. X., … Ornitz, D. M. (2006). Fibroblast growth factor signals regulate a wave of hedgehog activation that is essential for coronary vascular development. Genes & Development, 20(12), 1651-1666. https://doi.org/10.1101/gad.1411406
Lavine, K. J., Yu, K., White, A. C., Zhang, X. Q., Smith, C., Partanen, J., & Ornitz, D. M. (2005). Endocardial and epicardial derived FGF signals regulate myocardial proliferation and differentiation in vivo. Developmental Cell, 8(1), 85-95. https://doi.org/10.1016/j.devcel.2004.12.002
Lawson, N. D., Scheer, N., Pham, V. N., Kim, C. H., Chitnis, A. B., Campos-Ortega, J. A., & Weinstein, B. M. (2001). Notch signaling is required for arterial-venous differentiation during embryonic vascular development. Development, 128(19), 3675-3683.
Lawson, N. D., Vogel, A. M., & Weinstein, B. M. (2002). Sonic hedgehog and vascular endothelial growth factor act upstream of the notch pathway during arterial endothelial differentiation. Developmental Cell, 3(1), 127-136. https://doi.org/10.1016/s1534-5807(02)00198-3
Le Noble, F., Moyon, D., Pardanaud, L., Yuan, L., Djonov, V., Matthijsen, R., … Eichmann, A. (2004). Flow regulates arterial-venous differentiation in the chick embryo yolk sac. Development, 131(2), 361-375. https://doi.org/10.1242/dev.00929
Lescroart, F., Chabab, S., Lin, X. H., Rulands, S., Paulissen, C., Rodolosse, A., … Blanpain, C. (2014). Early lineage restriction in temporally distinct populations of Mespl progenitors during mammalian heart development. Nature Cell Biology, 16(9), 829-840. https://doi.org/10.1038/ncb3024
Li, Y., Wang, X. Y., Ma, Z. L., Chuai, M. L., Munsterberg, A., Lee, K. K., & Yang, X. S. (2014). Endoderm contributes to endocardial composition during cardiogenesis. Chinese Science Bulletin, 59(22), 2749-2755. https://doi.org/10.1007/s11434-014-0366-7
Lin, F. J., Tsai, M. J., & Tsai, S. Y. (2007). Artery and vein formation: A tug of war between different forces. EMBO Reports, 8(10), 920-924. https://doi.org/10.1038/sj.embor.7401076
Linask, K. K., Knudsen, K. A., & Gui, Y. H. (1997). N-cadherin-catenin interaction: Necessary component of cardiac cell compartmentalization during early vertebrate heart development. Developmental Biology, 185(2), 148-164.
Linask, K. K., & Lash, J. W. (1993). Early heart development - Dynamics of endocardial cell sorting suggests a common origin with cardiomyocytes. Developmental Dynamics, 196(1), 62-69.
Lindsley, R. C., Gill, J. G., Murphy, T. L., Langer, E. M., Cai, M., Mashayekhi, M., … Murphy, K. M. (2008). Mesp1 coordinately regulates cardiovascular fate restriction and epithelial-mesenchymal transition in differentiating ESCs. Cell Stem Cell, 3(1), 55-68. https://doi.org/10.1016/j.stem.2008.04.004
Liu, H., Zhang, W. B., Kennard, S., Caldwell, R. B., & Lilly, B. (2010). Notch3 is critical for proper angiogenesis and mural cell investment. Circulation Research, 107(7), 860-870. https://doi.org/10.1161/circresaha.110.218271
Liu, Y., Lu, X. R., Xiang, F. L., Poelmann, R. E., Gittenberger-de Groot, A. C., Robbins, J., & Feng, Q. P. (2014). Nitric oxide synthase-3 deficiency results in hypoplastic coronary arteries and postnatal myocardial infarction. European Heart Journal, 35(14), 920-930. https://doi.org/10.1093/eurheartj/ehs306
Lucitti, J. L., Jones, E. A. V., Huang, C. Q., Chen, J., Fraser, S. E., & Dickinson, M. E. (2007). Vascular remodeling of the mouse yolk sac requires hemodynamic force. Development, 134(18), 3317-3326. https://doi.org/10.1242/dev.02883
Lucitti, J. L., Visconti, R., Novak, J., & Keller, B. B. (2006). Increased arterial load alters aortic structural and functional properties during embryogenesis. American Journal of Physiology-Heart and Circulatory Physiology, 291(4), H1919-H1926. https://doi.org/10.1152/ajpheart.01061.2005
Luttun, A., & Carmeliet, P. (2003). De novo vasculogenesis in the heart. Cardiovascular Research, 58(2), 378-389. https://doi.org/10.1016/S0008-6363(03)00258-X
Männer, J. (1992). The development of pericardial villi in the chick embryo. Anatomy and Embryology, 186(4), 379-385. https://doi.org/10.1007/bf00185988
Männer, J. (1999). Does the subepicardial mesenchyme contribute myocardioblasts to the myocardium of the chick embryo heart? A quail-chick chimera study tracing the fate of the epicardial primordium. The Anatomical Record, 255(2), 212-226. https://doi.org/10.1002/(sici)1097-0185(19990601)255:2<212::aid-ar11>3.3.co;2-o
Mickoleit, M., Schmid, B., Weber, M., Fahrbach, F. O., Hombach, S., Reischauer, S., & Huisken, J. (2014). High-resolution reconstruction of the beating zebrafish heart. Nature Methods, 11(9), 919-922. https://doi.org/10.1038/nmeth.3037
Mikawa, T., & Gourdie, R. G. (1996). Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Developmental Biology, 174(2), 221-232. https://doi.org/10.1006/dbio.1996.0068
Milgrom-Hoffman, M., Harrelson, Z., Ferrara, N., Zelzer, E., Evans, S. M., & Tzahor, E. (2011). The heart endocardium is derived from vascular endothelial progenitors. Development, 138(21), 4777-4787. https://doi.org/10.1242/dev.061192
Misfeldt, A. M., Boyle, S. C., Tompkins, K. L., Bautch, V. L., Labosky, P. A., & Baldwin, H. S. (2009). Endocardial cells are a distinct endothelial lineage derived from Flk1+multipotent cardiovascular progenitors. Developmental Biology, 333(1), 78-89. https://doi.org/10.1016/j.ydbio.2009.06.033
Mommersteeg, M. T. M., Dominguez, J. N., Wiese, C., Norden, J., de Gier-de Vries, C., Burch, J. B. E., … Christoffels, V. M. (2010). The sinus venosus progenitors separate and diversify from the first and second heart fields early in development. Cardiovascular Research, 87(1), 92-101. https://doi.org/10.1093/cvr/cvq033
Munoz-Chapuli, R., Carmona, R., Guadix, J. A., Macias, D., & Perez-Pomares, J. M. (2005). The origin of the endothelial cells: An evo-devo approach for the invertebrate/vertebrate transition of the circulatory system. Evolution & Development, 7(4), 351-358. https://doi.org/10.1111/j.1525-142X.2005.05040.x
Munoz-Chapuli, R., Perez-Pomares, J. M., Macias, D., Garcia-Garrido, L., Carmona, R., & Gonzalez, M. (1999). Differentiation of hemangioblasts from embryonic mesothelial cells? A model on the origin of the vertebrate cardiovascular system. Differentiation, 64(3), 133-141. https://doi.org/10.1046/j.1432-0436.1999.6430133.x
Nakano, A., Nakano, H., Smith, K. A., & Palpant, N. J. (2016). The developmental origins and lineage contributions of endocardial endothelium. Biochimica Et Biophysica Acta-Molecular Cell Research, 1863(7), 1937-1947. https://doi.org/10.1016/j.bbamcr.2016.01.022
Nakano, H., Liu, X. Q., Arshi, A., Nakashima, Y., van Handel, B., Sasidharan, R., … Nakano, A. (2013). Haemogenic endocardium contributes to transient definitive haematopoiesis. Nature Communications, 2013(4), 1564. https://doi.org/10.1038/ncomms2569
Nemer, G., & Nemer, M. (2002). Cooperative interaction between GATA5 and NF-ATc regulates endothelial-endocardial differentiation of cardiogenic cells. Development, 129(17), 4045-4055.
Noden, D. M., Poelmann, R. E., & Groot, A. C. G. (1995). Cell origins and tissue boundaries during outflow tract development. Trends in Cardiovascular Medicine, 5(2), 69-75. https://doi.org/10.1016/s1050-1738(99)80002-4
Olivey, H. E., & Svensson, E. C. (2010). Epicardial-myocardial signaling directing coronary vasculogenesis. Circulation Research, 106(5), 818-832. https://doi.org/10.1161/circresaha.109.209197
Palencia-Desai, S., Kohli, V., Kang, J., Chi, N. C., Black, B. L., & Sumanas, S. (2011). Vascular endothelial and endocardial progenitors differentiate as cardiomyocytes in the absence of Etsrp/Etv2 function. Development, 138(21), 4721-4732. https://doi.org/10.1242/dev.064998
Palencia-Desai, S., Rost, M. S., Schumacher, J. A., Ton, Q. V., Craig, M. P., Baltrunaite, K., … Sumanas, S. (2015). Myocardium and BMP signaling are required for endocardial differentiation. Development, 142(13), 2304-2315. https://doi.org/10.1242/dev.118687
Patan, S. (2000). Vasculogenesis and angiogenesis as mechanisms of vascular network formation, growth and remodeling. Journal of Neuro-Oncology, 50(1-2), 1-15. https://doi.org/10.1023/a:1006493130855
Pennisi, D. J., & Mikawa, T. (2005). Normal patterning of the coronary capillary plexus is dependent on the correct transmural gradient of FGF expression in the myocardium. Developmental Biology, 279(2), 378-390. https://doi.org/10.1016/j.ydbio.2004.12.028
Perez-Pomares, J. M., Carmona, R., Gonzalez-Iriarte, M., Atencia, G., Wessels, A., & Munoz-Chapuli, R. (2002). Origin of coronary endothelial cells from epicardial mesothelium in avian embryos. International Journal of Developmental Biology, 46(8), 1005-1013.
Perez-Pomares, J. M., Phelps, A., Sedmerova, M., Carmona, R., Gonzalez-Iriarte, M., Munoz-Chapuli, R., & Wessels, A. (2002). Experimental studies on the spatiotemporal expression of WT1 and RALDH2 in the embryonic avian heart: A model for the regulation of myocardial and valvuloseptal development by epicardially derived cells (EPDCs). Developmental Biology, 247(2), 307-326. https://doi.org/10.1006/dbio.2002.0706
Poelmann, R. E., Gittenbergerdegroot, A. C., Mentink, M. M. T., Bokenkamp, R., & Hogers, B. (1993). Development of the cardiac coronary vascular endothelium, studied with antiendothelial antibodies, in chicken-quail chimeras. Circulation Research, 73(3), 559-568. https://doi.org/10.1161/01.res.73.3.559
Pombal, M. A., Carmona, R., Megias, M., Ruiz, A., Parez-Pomares, J. M., & Munoz-Chapulib, R. (2008). Epicardial development in lamprey supports an evolutionary origin of the vertebrate epicardium from an ancestral pronephric external glomerulus. Evolution & Development, 10(2), 210-216. https://doi.org/10.1111/j.1525-142X.2008.00228.x
Red-Horse, K., Ueno, H., Weissman, I. L., & Krasnow, M. A. (2010). Coronary arteries form by developmental reprogramming of venous cells. Nature, 464(7288), 549-553. https://doi.org/10.1038/nature08873
Redkar, A., Montgomery, M., & Litvin, J. (2001). Fate map of early avian cardiac progenitor cells. Development, 128(12), 2269-2279.
Romer, A. S., & Parsons, T. S. (1986). The vertebrate body (6th ed.). Boston, MA: Cengage Learning.
Rosenquist, G. C. (1970). Location and movements of cardiogenic cells in the chick embryo: The heart-forming portion of the primitive streak. Developmental Biology, 22(3), 461-475. https://doi.org/10.1016/0012-1606(70)90163-6
Rosenthal, N., & Harvey, R. P. (2010). Heart development and regeneration (Vol. 1). New York, NY: Academic Press.
Ruppert, E. E. (2005). Key characters uniting hemichordates and chordates: Homologies or homoplasies? Canadian Journal of Zoology-Revue Canadienne De Zoologie, 83(1), 8-23. https://doi.org/10.1139/z04-158
Ruppert, E. E., & Carle, K. J. (1983). Morphology of metazoan circulatory systems. Zoomorphology, 103(3), 193-208. https://doi.org/10.1007/bf00310477
Saga, Y., Kitajima, S., & Miyagawa-Tomita, S. (2000). Mesp1 expression is the earliest sign of cardiovascular development. Trends in Cardiovascular Medicine, 10(8), 345-352. https://doi.org/10.1016/s1050-1738(01)00069-x
Saga, Y., Miyagawa-Tomita, S., Takagi, A., Kitajima, S., Miyazaki, J., & Inoue, T. (1999). MesP1 is expressed in the heart precursor cells and required for the formation of a single heart tube. Development, 126(15), 3437-3447.
Sato, Y., Poynter, G., Huss, D., Filla, M. B., Czirok, A., Rongish, B. J., … Lansford, R. (2010). Dynamic analysis of vascular morphogenesis using transgenic quail embryos. PLoS ONE, 5(9), e12674. https://doi.org/10.1371/journal.pone.0012674
Schlueter, J., Manner, J., & Brand, T. (2006). BMP is an important regulator of proepicardial identity in the chick embryo. Developmental Biology, 295(2), 546-558. https://doi.org/10.1016/j.ydbio.2006.03.036
Schumacher, J. A., Bloomekatz, J., Garavito-Aguilar, Z. V., & Yelon, D. (2013). tal1 regulates the formation of intercellular junctions and the maintenance of identity in the endocardium. Developmental Biology, 383(2), 214-226. https://doi.org/10.1016/j.ydbio.2013.09.019
Sedmera, D. (2011). Function and form in the developing cardiovascular system. Cardiovascular Research, 91(2), 252-259. https://doi.org/10.1093/cvr/cvr062
Sharma, B., Chang, A., & Red-Horse, K. (2017). Coronary artery development: Progenitor cells and differentiation pathways. Annual Review of Physiology, 79, 1-19. https://doi.org/10.1146/annurev-physiol-022516-033953
Sugi, Y., & Markwald, R. R. (1996). Formation and early morphogenesis of endocardial endothelial precursor cells and the role of endoderm. Developmental Biology, 175(1), 66-83. https://doi.org/10.1006/dbio.1996.0096
Sugishita, Y., Leifer, D. W., Agani, F., Watanabe, M., & Fisher, S. A. (2004). Hypoxia-responsive signaling regulates the apoptosis-dependent remodeling of the embryonic avian cardiac outflow tract. Developmental Biology, 273(2), 285-296. https://doi.org/10.1016/j.ydbio.2004.05.036
Tammela, T., Enholm, B., Alitalo, K., & Paavonen, K. (2005). The biology of vascular endothelial growth factors. Cardiovascular Research, 65(3), 550-563. https://doi.org/10.1016/j.cardiores.2004.12.002
Tian, X. Y., Hu, T. Y., He, L. J., Zhang, H., Huang, X. Z., Poelmann, R. E., … Zhou, B. (2013a). Peritruncal coronary endothelial cells contribute to proximal coronary artery stems and their aortic orifices in the mouse heart. PLoS ONE, 8(11), e80857. https://doi.org/10.1371/journal.pone.0080857
Tian, X. Y., Hu, T. Y., Zhang, H., He, L. J., Huang, X. Z., Liu, Q. Z., … Zhou, B. (2013b). Subepicardial endothelial cells invade the embryonic ventricle wall to form coronary arteries. Cell Research, 23(9), 1075-1090. https://doi.org/10.1038/cr.2013.83
Tomanek, R. J., Christensen, L. P., Simons, M., Murakami, M., Zheng, W., & Schatteman, G. C. (2010). Embryonic coronary vasculogenesis and angiogenesis are regulated by interactions between multiple FGFs and VEGF and are influenced by mesenchymal stem cells. Developmental Dynamics, 239(12), 3182-3191. https://doi.org/10.1002/dvdy.22460
Tomanek, R. J., Holifield, J. S., Reiter, R. S., Sandra, A., & Lin, J. J. C. (2002). Role of VEGF family members and receptors in coronary vessel formation. Developmental Dynamics, 225(3), 233-240. https://doi.org/10.1002/dvdy.10158
Tomanek, R. J., Ishii, Y., Holifield, J. S., Sjogren, C. L., Hansen, H. K., & Mikawa, T. (2006). VEGF family members regulate myocardial tubulogenesis and coronary artery formation in the embryo. Circulation Research, 98(7), 947-953. https://doi.org/10.1161/01.RES.0000216974.75994.da
Tomanek, R. J., Sandra, A., Zheng, W., Brock, T., Bjercke, R. J., & Holifield, J. S. (2001). Vascular endothelial growth factor and basic fibroblast growth factor differentially modulate early postnatal coronary angiogenesis. Circulation Research, 88(11), 1135-1141. https://doi.org/10.1161/hh1101.091191
Udan, R. S., Vadakkan, T. J., & Dickinson, M. E. (2013). Dynamic responses of endothelial cells to changes in blood flow during vascular remodeling of the mouse yolk sac. Development, 140(19), 4041-4050. https://doi.org/10.1242/dev.096255
Van den Akker, N. M. S., Caolo, V., Wisse, L. J., Peters, P., Poelmann, R. E., Carmeliet, P., … Groot, A. (2008). Developmental coronary maturation is disturbed by aberrant cardiac vascular endothelial growth factor expression and Notch signalling. Cardiovascular Research, 78(2), 366-375. https://doi.org/10.1093/cvr/cvm108
Van den Ameele, J., Tiberi, L., Bondue, A., Paulissen, C., Herpoel, A., Iacovino, M., … Vanderhaeghen, P. (2012). Eomesodermin induces Mesp1 expression and cardiac differentiation from embryonic stem cells in the absence of Activin. EMBO Reports, 13(4), 355-362. https://doi.org/10.1038/embor.2012.23
Van Handel, B., Montel-Hagen, A., Sasidharan, R., Nakano, H., Ferrari, R., Boogerd, C. J., … Mikkola, H. K. A. (2012). Scl represses cardiomyogenesis in prospective hemogenic endothelium and endocardium. Cell, 150(3), 590-605. https://doi.org/10.1016/j.cell.2012.06.026
Van Wijk, B., van den Berg, G., Abu-Issa, R., Barnett, P., van der Velden, S., Schmidt, M., … Van den Hoff, M. J. B. (2009). Epicardium and myocardium separate from a common precursor pool by crosstalk between bone morphogenetic protein- and fibroblast growth factor-signaling pathways. Circulation Research, 105(5), 431-441. https://doi.org/10.1161/circresaha.109.203083
Viragh, S., Szabo, E., & Challice, C. E. (1989). Formation of the primitive myocardial and endocardial tubes in the chicken embryo. Journal of Molecular and Cellular Cardiology, 21(2), 123-137. https://doi.org/10.1016/0022-2828(89)90856-0
Voboril, Z., & Schiebler, T. (1969). Development of blood supply in rat heart. Zeitschrift Fur Anatomie Und Entwicklungsgeschichte, 129(1), 24-40. https://doi.org/10.1007/bf00521953
Volz, K. S., Jacobs, A. H., Chen, H. D. I., Poduri, A., McKay, A. S., Riordan, D. P., … Red-Horse, K. (2015). Pericytes are progenitors for coronary artery smooth muscle. eLife, 4, e10036. https://doi.org/10.7554/eLife.10036
Waldo, K. L., Willner, W., & Kirby, M. L. (1990). Origin of the proximal coronary artery stems and a review of ventricular vascularization in the chick embryo. American Journal of Anatomy, 188(2), 109-120. https://doi.org/10.1002/aja.1001880202
Wang, H. U., Chen, Z. F., & Anderson, D. J. (1998). Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell, 93(5), 741-753. https://doi.org/10.1016/s0092-8674(00)81436-1
Wang, H., She, Q., Gao, L. Z., Zha, C. Q., Du, J. L., & Jing, X. D. (2015). Tbx18 function in the development of mouse coronary vascular and ventricular wall structures. Progress in Biochemistry and Biophysics, 42(4), 348-355.
Ward, N. L., Van Slyke, P., Sturk, C., Cruz, M., & Dumont, D. J. (2004). Angiopoietin 1 expression levels in the myocardium direct coronary vessel development. Developmental Dynamics, 229(3), 500-509. https://doi.org/10.1002/dvdy.10479
Wei, Y., & Mikawa, T. (2000). Fate diversity of primitive streak cells during heart field formation in ovo. Developmental Dynamics, 219(4), 505-513.
Wikenheiser, J., Wolfram, J. A., Gargesha, M., Yang, K., Karunamuni, G., Wilson, D. L., … Watanabe, M. (2009). Altered hypoxia-inducible factor-1 alpha expression levels correlate with coronary vessel anomalies. Developmental Dynamics, 238(10), 2688-2700. https://doi.org/10.1002/dvdy.22089
Wu, B. R., Zhang, Z., Lui, W., Chen, X. J., Wang, Y. D., Chamberlain, A. A., … Zhou, B. (2012). Endocardial cells form the coronary arteries by angiogenesis through myocardial-endocardial VEGF signaling. Cell, 151(5), 1083-1096. https://doi.org/10.1016/j.cell.2012.10.023
Wu, S. P., Dong, X. R., Regan, J. N., Su, C., & Majesky, M. W. (2013). Tbx18 regulates development of the epicardium and coronary vessels. Developmental Biology, 383(2), 307-320. https://doi.org/10.1016/j.ydbio.2013.08.019
Xavier, J., Castro, R. A., Sampaio, A. C., Azambuja, A. P., Castillo, H. A., Cravo, R. M., & Simoes-Costa, M. S. (2007). Parallel avenues in the evolution of hearts and pumping organs. Cellular and Molecular Life Sciences, 64(6), 719-734. https://doi.org/10.1007/s00018-007-6524-1
Xu, C., Hasan, S. S., Schmidt, I., Rocha, S. F., Pitulescu, M. E., Bussmann, J., … Siekmann, A. F. (2014). Arteries are formed by vein-derived endothelial tip cells. Nature Communications, 5, 5758. https://doi.org/10.1038/ncomms6758
You, L. R., Lin, F. J., Lee, C. T., DeMayo, F. J., Tsai, M. J., & Tsai, S. Y. (2005). Suppression of Notch signalling by the COUP-TFII transcription factor regulates vein identity. Nature, 435(7038), 98-104. https://doi.org/10.1038/nature03511
Yuan, H. T., Khankin, E. V., Karumanchi, S. A., & Parikh, S. M. (2009). Angiopoietin 2 is a partial agonist/antagonist of Tie2 signaling in the endothelium. Molecular and Cellular Biology, 29(8), 2011-2022. https://doi.org/10.1128/mcb.01472-08
Zhang, H., Pu, W. J., Li, G., Huang, X. Z., He, L. J., Tian, X. Y., … Zhou, B. (2016). Endocardium minimally contributes to coronary endothelium in the embryonic ventricular free walls. Circulation Research, 118(12), 1880-1893. https://doi.org/10.1161/circresaha.116.308749
Zhang, Z., & Zhou, B. (2013). Accelerated coronary angiogenesis by Vegfr1-knockout endocardial cells. PLoS ONE, 8(7), e70570. https://doi.org/10.1371/journal.pone.0070570
Zhou, B., Ma, Q., Kong, S. W., Hu, Y., Campbell, P. H., McGowan, F. X., … Pu, W. T. (2009). Fog2 is critical for cardiac function and maintenance of coronary vasculature in the adult mouse heart. Journal of Clinical Investigation, 119(6), 1462-1476. https://doi.org/10.1172/jci38723

Auteurs

Katrin Borasch (K)

Department of Veterinary Medicine, Institute of Veterinary Anatomy, Freie University Berlin, Berlin, Germany.

Kenneth Richardson (K)

College of Veterinary Medicine, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia.

Johanna Plendl (J)

Department of Veterinary Medicine, Institute of Veterinary Anatomy, Freie University Berlin, Berlin, Germany.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH