Profiling of subcellular EGFR interactome reveals hnRNP A3 modulates nuclear EGFR localization.


Journal

Oncogenesis
ISSN: 2157-9024
Titre abrégé: Oncogenesis
Pays: United States
ID NLM: 101580004

Informations de publication

Date de publication:
22 Apr 2020
Historique:
received: 25 10 2019
accepted: 07 04 2020
revised: 04 04 2020
entrez: 24 4 2020
pubmed: 24 4 2020
medline: 24 4 2020
Statut: epublish

Résumé

The aberrant subcellular translocation and distribution of epidermal growth factor receptor (EGFR) represent a major yet currently underappreciated cancer development mechanism in non-small cell lung cancer (NSCLC). In this study, we investigated the subcellular interactome of EGFR by using a spectral counting-based approach combined with liquid chromatography-tandem mass spectrometry to understand the associated protein networks involved in the tumorigenesis of NSCLC. A total of 54, 77, and 63 EGFR-interacting proteins were identified specifically in the cytosolic, mitochondrial, and nuclear fractions from a NSCLC cell line, respectively. Pathway analyses of these proteins using the KEGG database shown that the EGFR-interacting proteins of the cytosol and nucleus are involved in the ribosome and spliceosome pathways, respectively, while those of the mitochondria are involved in metabolizing propanoate, fatty acid, valine, leucine, and isoleucine. A selected nuclear EGFR-interacting protein, hnRNP A3, was found to modulate the accumulation of nuclear EGFR. Downregulation of hnRNP A3 reduced the nuclear accumulation of EGFR, and this was accompanied by reduced tumor growth ability in vitro and in vivo. These results indicate that variations in the subcellular translocation and distribution of EGFR within NSCLC cells could affect tumor progression.

Identifiants

pubmed: 32321917
doi: 10.1038/s41389-020-0225-0
pii: 10.1038/s41389-020-0225-0
pmc: PMC7176650
doi:

Types de publication

Journal Article

Langues

eng

Pagination

40

Références

Maemondo, M. et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N. Engl. J. Med. 362, 2380–2388 (2010).
pubmed: 20573926 doi: 10.1056/NEJMoa0909530
Lo, H. W. et al. Nuclear interaction of EGFR and STAT3 in the activation of the iNOS/NO pathway. Cancer Cell 7, 575–589 (2005).
pubmed: 15950906 doi: 10.1016/j.ccr.2005.05.007
Lo, H. W. Nuclear mode of the EGFR signaling network: biology, prognostic value, and therapeutic implications. Discov. Med. 10, 44–51 (2010).
pubmed: 20670598 pmcid: 3637667
Boerner, J. L., Demory, M. L., Silva, C. & Parsons, S. J. Phosphorylation of Y845 on the epidermal growth factor receptor mediates binding to the mitochondrial protein cytochrome c oxidase subunit II. Mol. Cell. Biol. 24, 7059–7071 (2004).
pubmed: 15282306 pmcid: 479738 doi: 10.1128/MCB.24.16.7059-7071.2004
Demory, M. L. et al. Epidermal growth factor receptor translocation to the mitochondria: regulation and effect. J. Biol. Chem. 284, 36592–36604 (2009).
pubmed: 19840943 pmcid: 2794774 doi: 10.1074/jbc.M109.000760
Han, W. & Lo, H. W. Landscape of EGFR signaling network in human cancers: biology and therapeutic response in relation to receptor subcellular locations. Cancer Lett. 318, 124–134 (2012).
pubmed: 22261334 pmcid: 3304012 doi: 10.1016/j.canlet.2012.01.011
Liccardi, G., Hartley, J. A. & Hochhauser, D. EGFR nuclear translocation modulates DNA repair following cisplatin and ionizing radiation treatment. Cancer Res. 71, 1103–1114 (2011).
pubmed: 21266349 pmcid: 3033323 doi: 10.1158/0008-5472.CAN-10-2384
Marti, U. et al. Localization of epidermal growth factor receptor in hepatocyte nuclei. Hepatology 13, 15–20 (1991).
pubmed: 1988335 doi: 10.1002/hep.1840130104
Lin, S. Y. et al. Nuclear localization of EGF receptor and its potential new role as a transcription factor. Nat. Cell Biol. 3, 802–808 (2001).
pubmed: 11533659 doi: 10.1038/ncb0901-802
Huo, L. et al. RNA helicase A is a DNA-binding partner for EGFR-mediated transcriptional activation in the nucleus. Proc. Natl Acad. Sci. U.S.A. 107, 16125–16130 (2010).
pubmed: 20802156 pmcid: 2941329 doi: 10.1073/pnas.1000743107
Hanada, N. et al. Co-regulation of B-Myb expression by E2F1 and EGF receptor. Mol. Carcinog. 45, 10–17 (2006).
pubmed: 16299810 doi: 10.1002/mc.20147
Hung, L. Y. et al. Nuclear epidermal growth factor receptor (EGFR) interacts with signal transducer and activator of transcription 5 (STAT5) in activating Aurora-A gene expression. Nucleic Acids Res. 36, 4337–4351 (2008).
pubmed: 18586824 pmcid: 2490761 doi: 10.1093/nar/gkn417
Li, C., Iida, M., Dunn, E. F., Ghia, A. J. & Wheeler, D. L. Nuclear EGFR contributes to acquired resistance to cetuximab. Oncogene 28, 3801–3813 (2009).
pubmed: 19684613 pmcid: 2900381 doi: 10.1038/onc.2009.234
Lo, H. W. et al. Novel prognostic value of nuclear epidermal growth factor receptor in breast cancer. Cancer Res. 65, 338–348 (2005).
pubmed: 15665312
Lo, H. W., Cao, X., Zhu, H. & Ali-Osman, F. Cyclooxygenase-2 is a novel transcriptional target of the nuclear EGFR-STAT3 and EGFRvIII-STAT3 signaling axes. Mol. Cancer Res. 8, 232–245 (2010).
pubmed: 20145033 pmcid: 2824777 doi: 10.1158/1541-7786.MCR-09-0391
Jaganathan, S. et al. A functional nuclear epidermal growth factor receptor, SRC and Stat3 heteromeric complex in pancreatic cancer cells. PLoS ONE 6, e19605 (2011).
pubmed: 21573184 pmcid: 3088706 doi: 10.1371/journal.pone.0019605
Huang, W. C. et al. Nuclear translocation of epidermal growth factor receptor by Akt-dependent phosphorylation enhances breast cancer-resistant protein expression in gefitinib-resistant cells. J. Biol. Chem. 286, 20558–20568 (2011).
pubmed: 21487020 pmcid: 3121497 doi: 10.1074/jbc.M111.240796
Wang, S. C. et al. Tyrosine phosphorylation controls PCNA function through protein stability. Nat. Cell Biol. 8, 1359–1368 (2006).
pubmed: 17115032 doi: 10.1038/ncb1501
Dittmann, K. et al. Nuclear EGFR renders cells radio-resistant by binding mRNA species and triggering a metabolic switch to increase lactate production. Radiother. Oncol. 116, 431–437 (2015).
pubmed: 26320552 doi: 10.1016/j.radonc.2015.08.016
Bitler, B. G., Goverdhan, A. & Schroeder, J. A. MUC1 regulates nuclear localization and function of the epidermal growth factor receptor. J. Cell Sci. 123, 1716–1723 (2010).
pubmed: 20406885 pmcid: 2864713 doi: 10.1242/jcs.062661
Che, T. F. et al. Mitochondrial translocation of EGFR regulates mitochondria dynamics and promotes metastasis in NSCLC. Oncotarget 6, 37349–37366 (2015).
pubmed: 26497368 pmcid: 4741934 doi: 10.18632/oncotarget.5736
Tan, X., Thapa, N., Sun, Y. & Anderson, R. A. A kinase-independent role for EGF receptor in autophagy initiation. Cell 160, 145–160 (2015).
pubmed: 25594178 pmcid: 4297316 doi: 10.1016/j.cell.2014.12.006
Chu, Y. W. et al. Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line. Am. J. Respir. Cell Mol. Biol. 17, 353–360 (1997).
pubmed: 9308922 doi: 10.1165/ajrcmb.17.3.2837
Chen, C. Y. et al. Tid1-L inhibits EGFR signaling in lung adenocarcinoma by enhancing EGFR Ubiquitinylation and degradation. Cancer Res. 73, 4009–4019 (2013).
pubmed: 23698466 doi: 10.1158/0008-5472.CAN-12-4066
Boukakis, G., Patrinou-Georgoula, M., Lekarakou, M., Valavanis, C. & Guialis, A. Deregulated expression of hnRNP A/B proteins in human non-small cell lung cancer: parallel assessment of protein and mRNA levels in paired tumour/non-tumour tissues. BMC Cancer 10, 434 (2010).
pubmed: 20716340 pmcid: 2933625 doi: 10.1186/1471-2407-10-434
Katahira, J. T. et al. Nuclear RNA export factor 7 is localized in processing bodies and neuronal RNA granules through interactions with shuttling hnRNPs. Nucleic Acids Res. 36, 616–628 (2008).
pubmed: 18063567 doi: 10.1093/nar/gkm556
Mishra, N., Reddy, K. S., Timilsina, U., Gaur, D. & Gaur, R. Human APOBEC3B interacts with the heterogenous nuclear ribonucleoprotein A3 in cancer cells. J. Cell. Biochem. 119, 6695–6703 (2018).
pubmed: 29693745 doi: 10.1002/jcb.26855
Pelisch, F. et al. Involvement of hnRNP A1 in the matrix metalloprotease-3-dependent regulation of Rac1 pre-mRNA splicing. J. Cell. Biochem. 113, 2319–2329 (2012).
pubmed: 22345078 pmcid: 3927408 doi: 10.1002/jcb.24103
Cunningham, J. T., Moreno, M. V., Lodi, A., Ronen, S. M. & Ruggero, D. Protein and nucleotide biosynthesis are coupled by a single rate-limiting enzyme, PRPS2, to drive cancer. Cell 157, 1088–1103 (2014).
pubmed: 24855946 pmcid: 4140650 doi: 10.1016/j.cell.2014.03.052
Hsieh, A. C. et al. The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature 485, 55–61 (2012).
pubmed: 22367541 pmcid: 3663483 doi: 10.1038/nature10912
Silvera, D., Formenti, S. C. & Schneider, R. J. Translational control in cancer. Nat. Rev. Cancer 10, 254–266 (2010).
pubmed: 20332778 doi: 10.1038/nrc2824
Truitt, M. L. & Ruggero, D. New frontiers in translational control of the cancer genome. Nat. Rev. Cancer 16, 288–304 (2016).
pubmed: 27112207 pmcid: 5491099 doi: 10.1038/nrc.2016.27
Wang, T. H. et al. Tid1-S regulates the mitochondrial localization of EGFR in non-small cell lung carcinoma. Oncogenesis 6, e361 (2017).
pubmed: 28714950 pmcid: 5541714 doi: 10.1038/oncsis.2017.62
Bollu, L. R. et al. Involvement of de novo synthesized palmitate and mitochondrial EGFR in EGF induced mitochondrial fusion of cancer cells. Cell Cycle 13, 2415–2430 (2014).
pubmed: 25483192 pmcid: 4128886 doi: 10.4161/cc.29338
Halama, A. et al. Metabolic switch during adipogenesis: from branched chain amino acid catabolism to lipid synthesis. Arch. Biochem. Biophys. 589, 93–107 (2016).
pubmed: 26408941 doi: 10.1016/j.abb.2015.09.013
He, Y. & Smith, R. Nuclear functions of heterogeneous nuclear ribonucleoproteins A/B. Cell. Mol. Life Sci. 66, 1239–1256 (2009).
pubmed: 19099192 doi: 10.1007/s00018-008-8532-1
Jurica, M. S., Licklider, L. J., Gygi, S. R., Grigorieff, N. & Moore, M. J. Purification and characterization of native spliceosomes suitable for three-dimensional structural analysis. RNA 8, 426–439 (2002).
pubmed: 11991638 pmcid: 1370266 doi: 10.1017/S1355838202021088
Rappsilber, J., Ryder, U., Lamond, A. I. & Mann, M. Large-scale proteomic analysis of the human spliceosome. Genome Res. 12, 1231–1245 (2002).
pubmed: 12176931 pmcid: 186633 doi: 10.1101/gr.473902
He, Y., Brown, M. A., Rothnagel, J. A., Saunders, N. A. & Smith, R. Roles of heterogeneous nuclear ribonucleoproteins A and B in cell proliferation. J. Cell Sci. 118, 3173–3183 (2005).
pubmed: 16014382 doi: 10.1242/jcs.02448
Patry, C. et al. Small interfering RNA-mediated reduction in heterogeneous nuclear ribonucleoparticule A1/A2 proteins induces apoptosis in human cancer cells but not in normal mortal cell lines. Cancer Res. 63, 7679–7688 (2003).
pubmed: 14633690
Dittmann, K., Mayer, C., Czemmel, S., Huber, S. M. & Rodemann, H. P. New roles for nuclear EGFR in regulating the stability and translation of mRNAs associated with VEGF signaling. PLoS ONE 12, e0189087 (2017).
pubmed: 29253018 pmcid: 5734708 doi: 10.1371/journal.pone.0189087
Papadopoulou, C., Boukakis, G., Ganou, V., Patrinou-Georgoula, M. & Guialis, A. Expression profile and interactions of hnRNP A3 within hnRNP/mRNP complexes in mammals. Arch. Biochem. Biophys. 523, 151–160 (2012).
pubmed: 22546510 doi: 10.1016/j.abb.2012.04.012
Tauler, J., Zudaire, E., Liu, H., Shih, J. & Mulshine, J. L. hnRNP A2/B1 modulates epithelial-mesenchymal transition in lung cancer cell lines. Cancer Res. 70, 7137–7147 (2010).
pubmed: 20807810 doi: 10.1158/0008-5472.CAN-10-0860
Chen, C. Y., Yu, Z. Y., Chuang, Y. S., Huang, R. M. & Wang, T. C. Sulforaphane attenuates EGFR signaling in NSCLC cells. J. Biomed. Sci. 22, 38 (2015).
pubmed: 26036303 pmcid: 4451877 doi: 10.1186/s12929-015-0139-x
Wang, C. L. et al. Discovery of retinoblastoma-associated binding protein 46 as a novel prognostic marker for distant metastasis in nonsmall cell lung cancer by combined analysis of cancer cell secretome and pleural effusion proteome. J. Proteome Res. 8, 4428–4440 (2009).
pubmed: 19655816 doi: 10.1021/pr900160h
Kuo, R. L. et al. Interactome analysis of the NS1 protein encoded by influenza A H1N1 virus reveals a positive regulatory role of host protein PRP19 in viral replication. J. Proteome Res. 15, 1639–1648 (2016).
pubmed: 27096427 doi: 10.1021/acs.jproteome.6b00103
Kuo, R. L. et al. Interactome analysis of NS1 protein encoded by influenza A H7N9 virus reveals an inhibitory role of NS1 in host mRNA maturation. J. Proteome Res. 17, 1474–1484 (2018).
pubmed: 29558158 doi: 10.1021/acs.jproteome.7b00815
Wu, C. C., Chu, H. W., Hsu, C. W., Chang, K. P. & Liu, H. P. Saliva proteome profiling reveals potential salivary biomarkers for detection of oral cavity squamous cell carcinoma. Proteomics 15, 3394–3404 (2015).
pubmed: 26205615 doi: 10.1002/pmic.201500157
Keller, A., Nesvizhskii, A. I., Kolker, E. & Aebersold, R. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal. Chem. 74, 5383–5392 (2002).
pubmed: 12403597 doi: 10.1021/ac025747h
Nesvizhskii, A. I., Keller, A., Kolker, E. & Aebersold, R. A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem. 75, 4646–4658 (2003).
pubmed: 14632076 doi: 10.1021/ac0341261
Hsu, C. W. et al. Proteomic profiling of paired interstitial fluids reveals dysregulated pathways and salivary NID1 as a biomarker of oral cavity squamous cell carcinoma. Mol. Cell. Proteomics 18, 1939–1949 (2019).
pubmed: 31315917 doi: 10.1074/mcp.RA119.001654
Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).
pubmed: 19131956 doi: 10.1038/nprot.2008.211
Szklarczyk, D. et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43, D447–D452 (2015).
pubmed: 25352553 doi: 10.1093/nar/gku1003
Wang, T. H. et al. Heterogeneous nuclear ribonucleoproteins A1 and A2 function in telomerase-dependent maintenance of telomeres. Cancers 11, E334 (2019).
pubmed: 30857208 doi: 10.3390/cancers11030334
Chen, C. Y. et al. Tid1 functions as a tumour suppressor in head and neck squamous cell carcinoma. J. Pathol. 219, 347–355 (2009).
pubmed: 19681071 doi: 10.1002/path.2604
Chen, C. Y. et al. Heterogeneous nuclear ribonucleoproteins A1 and A2 modulate expression of Tid1 isoforms and EGFR signaling in non-small cell lung cancer. Oncotarget 7, 16760–16772 (2016).
pubmed: 26919236 pmcid: 4941349

Auteurs

Tong-Hong Wang (TH)

Graduate Institute of Health Industry Technology and Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 333, Taiwan.
Tissue Bank, Chang Gung Memorial Hospital at Linkou, Taoyuan, 333, Taiwan.

Chih-Ching Wu (CC)

Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, 333, Taiwan.
Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan.
Molecular Medicine Research Center, Chang Gung University, Taoyuan, 333, Taiwan.
Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan.

Kuo-Yen Huang (KY)

Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan.

Wen-Yu Chuang (WY)

Department of Pathology, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, 333, Taiwan.

Chuen Hsueh (C)

Graduate Institute of Health Industry Technology and Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 333, Taiwan.

Hsin-Jung Li (HJ)

Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan.

Chi-Yuan Chen (CY)

Graduate Institute of Health Industry Technology and Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 333, Taiwan. d49417002@gmail.com.
Tissue Bank, Chang Gung Memorial Hospital at Linkou, Taoyuan, 333, Taiwan. d49417002@gmail.com.

Classifications MeSH