A high-resolution wind damage model for Europe.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
22 04 2020
22 04 2020
Historique:
received:
20
03
2019
accepted:
20
03
2020
entrez:
24
4
2020
pubmed:
24
4
2020
medline:
24
4
2020
Statut:
epublish
Résumé
Extreme wind events are among the costliest natural disasters in Europe, causing severe damages every year. Despite the significant impact, damages related to windstorms are an understudied topic in academia. For damage estimates, the community mostly relies on post-disaster insurance data, which is often not publicly available. Few studies offer more generic tools, but again these are often based on non-disclosed insurance data. To offer a generic, high-resolution, reproducible, and publicly accessible tool, this study presents a wind damage model that is built around publicly available hazard, exposure, and vulnerability data. We apply the model to assess building damages related to extratropical storms in Europe, but the methodology is applicable globally, given data availability, and to other hazards for which similar risk frameworks can be applied. The results show that for Europe, coastal regions are affected the most, with the United Kingdom, Ireland, Germany, France, the Netherlands, and Denmark as most affected countries. We find that the modelled damage estimates are in line with reported damages for a series of historical storms. The model is distributed as an open-source model to offer a transparent and useable windstorm damage model to a broad audience.
Identifiants
pubmed: 32321938
doi: 10.1038/s41598-020-63580-w
pii: 10.1038/s41598-020-63580-w
pmc: PMC7176694
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
6866Références
Munich, R. E. NatCatSERVICE. (2018).
Stott, P. A. et al. Attribution of extreme weather and climate-related events. Wiley Interdiscip. Rev. Clim. Chang. 7, 23–41 (2016).
doi: 10.1002/wcc.380
Vautard, R. et al. Attribution of human-induced dynamical and thermodynamical contributions in extreme weather events. Environ. Res. Lett. 11, 114009 (2016).
doi: 10.1088/1748-9326/11/11/114009
Otto, F. E. L. et al. Climate change increases the probability of heavy rains in Northern England/Southern Scotland like those of storm Desmond—a real-time event attribution revisited. Environ. Res. Lett. 13, 24006 (2018).
doi: 10.1088/1748-9326/aa9663
Eden, J. M. et al. Extreme precipitation in the Netherlands: An event attribution case study. Weather Clim. Extrem. 21, 90–101 (2018).
doi: 10.1016/j.wace.2018.07.003
Otto, F. E. L., Skeie, R. B., Fuglestvedt, J. S., Berntsen, T. & Allen, M. R. Assigning historic responsibility for extreme weather events. Nat. Clim. Chang. 7, 757 (2017).
doi: 10.1038/nclimate3419
Rahmstorf, S. & Coumou, D. Increase of extreme events in a warming world. Proc. Natl. Acad. Sci. 108, 17905–17909 (2011).
doi: 10.1073/pnas.1101766108
Mann, M. E. et al. Influence of anthropogenic climate change on planetary wave resonance and extreme weather events. Sci. Rep. 7, 45242 (2017).
doi: 10.1038/srep45242
Roberts, J. F. et al. The XWS open access catalogue of extreme European windstorms from 1979 to 2012. Nat. Hazards Earth Syst. Sci. 14, 2487–2501 (2014).
doi: 10.5194/nhess-14-2487-2014
Crowley, H. et al. Towards a Uniform Earthquake Risk Model for Europe. in 16th European Conference on Earthquake Engineering. Thessaloniki, Greece (2018).
Alfieri, L., Dottori, F., Betts, R., Salamon, P. & Feyen, L. Multi-model projections of river flood risk in Europe under global warming. Climate 6, 6 (2018).
doi: 10.3390/cli6010006
Feuerstein, B. et al. Towards an improved wind speed scale and damage description adapted for Central Europe. Atmos. Res. 100, 547–564 (2011).
doi: 10.1016/j.atmosres.2010.12.026
Welker, C. et al. Modelling economic losses of historic and present-day high-impact winter windstorms in Switzerland. Tellus A Dyn. Meteorol. Oceanogr. 68, 29546 (2016).
doi: 10.3402/tellusa.v68.29546
Groenemeijer, P. et al. Severe convective storms in Europe: Ten years of research and education at the European Severe Storms Laboratory. Bull. Am. Meteorol. Soc. 98, 2641–2651 (2017).
doi: 10.1175/BAMS-D-16-0067.1
Schwierz, C. et al. Modelling European winter wind storm losses in current and future climate. Clim. Change 101, 485–514 (2010).
doi: 10.1007/s10584-009-9712-1
Koks, E. E. et al. A global multi-hazard risk analysis of road and railway infrastructure assets. Nat. Commun. 10, 2677 (2019).
doi: 10.1038/s41467-019-10442-3
Guy Carpenter. Windstorm Erwin/Gudrun–January 2005. Spec. Pract. Brief. 2, 1–14 (2005).
Liberato, M. L. R., Pinto, J. G., Trigo, I. F. & Trigo, R. M. Klaus–an exceptional winter storm over northern Iberia and southern France. Weather 66, 330–334 (2011).
doi: 10.1002/wea.755
Deutschländer, T., Friedrich, K., Haeseler, S. & Lefebvre, C. Severe storm XAVER across northern Europe from 5 to 7 December 2013. Dtsch. Wetterd. (2013).
Waisman, F. European windstorm vendor model comparison. in Slides of a presentation at IUA catastrophe risk management conference, London 30 (2015).
Haklay, M. How Good is Volunteered Geographical Information? A Comparative Study of OpenStreetMap and Ordnance Survey Datasets. Environment and Planning B: Planning and Design 37(4), 682–703 (2010).
Tian, Y., Zhou, Q. & Fu, X. An Analysis of the Evolution, Completeness and Spatial Patterns of OpenStreetMap Building Data in China. ISPRS International Journal of Geo-Information 8(1), 35 (2019).
Brovelli, M. A. & Zamboni, G. A new method for the assessment of spatial accuracy and completeness of OpenStreetMap building footprints. ISPRS International Journal of Geo-Information 7(8), 289 (2018).
Ward, P. J. et al. A global framework for future costs and benefits of river-flood protection in urban areas. Nat. Clim. Chang. 7, 642 (2017).
doi: 10.1038/nclimate3350
Pagani, M. et al. OpenQuake engine: An open hazard (and risk) software for the global earthquake model. Seismol. Res. Lett. 85, 692–702 (2014).
doi: 10.1785/0220130087
Kron, W. Flood risk= hazard• values• vulnerability. Water Int. 30, 58–68 (2005).
doi: 10.1080/02508060508691837
Koks, E. E., Jongman, B., Husby, T. G. & Botzen, W. J. W. Combining hazard, exposure and social vulnerability to provide lessons for flood risk management. Environ. Sci. Policy 47, 42–52 (2015).
doi: 10.1016/j.envsci.2014.10.013
Maisey, P., Becker, B. & Steptoe, H. WISC Storm Footprint (Gridded Windfield) Description. (2017).
Davies, T. et al. A new dynamical core for the Met Office’s global and regional modelling of the atmosphere. Q. J. R. Meteorol. Soc. 131, 1759–1782 (2005).
doi: 10.1256/qj.04.101
EU Building Stock Observatory. EU Building Database. (2018).
EEA. CORINE Land Cover 2012. Copenhagen, Denmark: European Environmental Agency. (2014).
Jaiswal, K., Wald, D. & Porter, K. A global building inventory for earthquake loss estimation and risk management. Earthq. Spectra 26, 731–748 (2010).
doi: 10.1193/1.3450316
Huizinga, J., de Moel, H., Szewczyk, W. & others. Global flood depth-damage functions: Methodology and the database with guidelines. (2017).
De Moel, H. & Aerts, J. Effect of uncertainty in land use, damage models and inundation depth on flood damage estimates. Nat. Hazards 58, 407–425 (2011).
doi: 10.1007/s11069-010-9675-6
Crosetto, M., Tarantola, S. & Saltelli, A. Sensitivity and uncertainty analysis in spatial modelling based on GIS. Agric. Ecosyst. Environ. 81, 71–79 (2000).
doi: 10.1016/S0167-8809(00)00169-9
Helton, J. C. Uncertainty and sensitivity analysis techniques for use in performance assessment for radioactive waste disposal. Reliab. Eng. Syst. Saf. 42, 327–367 (1993).
doi: 10.1016/0951-8320(93)90097-I
Herman, J. & Usher, W. SALib: an open-source Python library for sensitivity analysis. J. Open Source Softw. 2 (2017).
Borgonovo, E. A new uncertainty importance measure. Reliab. Eng. Syst. Saf. 92, 771–784 (2007).
doi: 10.1016/j.ress.2006.04.015
Plischke, E., Borgonovo, E. & Smith, C. L. Global sensitivity measures from given data. Eur. J. Oper. Res. 226, 536–550 (2013).
doi: 10.1016/j.ejor.2012.11.047
De Moel, H., Asselman, N. E. M. & Aerts, J. Uncertainty and sensitivity analysis of coastal flood damage estimates in the west of the Netherlands. Nat. Hazards Earth Syst. Sci. 12, 1045–1058 (2012).
doi: 10.5194/nhess-12-1045-2012