Applying nanotechnology to increase the rumen protection of amino acids in dairy cows.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
22 04 2020
Historique:
received: 04 09 2019
accepted: 01 04 2020
entrez: 24 4 2020
pubmed: 24 4 2020
medline: 1 12 2020
Statut: epublish

Résumé

The amino acid requirements of high-production dairy cows represent a challenge to ensuring that their diet is supplied with available dietary resources, and thus supplementation with protected amino acids is necessary to increase their post-ruminal supply. Lysine is often the most limiting amino acid in corn-based diets. The present study proposes the use of lipid nanoparticles as novel rumen-bypass systems and assesses their capability to carry lysine. Solid lipid nanoparticles, nanostructured lipid carriers and multiple lipid nanoparticles were considered and their resistance in a rumen inoculum collected from fistulated cows was assessed. All nanoparticles presented diameters between 200-500 nm and surface charges lower than -30 mV. Lysine encapsulation was achieved in all nanoparticles, and its efficiency ranged from 40 to 90%. Solid lipid nanoparticles composed of arachidic or stearic acids and Tween 60 resisted ruminal digestion for up to 24 h. The nanoparticles were also proven to protect their lysine content from the ruminal microbiota. Based on our findings, the proposed nanoparticles represent promising candidates for rumen-bypass approaches and should be studied further to help improve the current technologies and overcome their limitations.

Identifiants

pubmed: 32321963
doi: 10.1038/s41598-020-63793-z
pii: 10.1038/s41598-020-63793-z
pmc: PMC7176649
doi:

Substances chimiques

Amino Acids 0
Lipids 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

6830

Références

Edmunds, B. et al. The amino acid composition of rumen-undegradable protein: a comparison between forages. J. Dairy Sci. 96, 4568–4577, https://doi.org/10.3168/jds.2012-6536 (2013).
doi: 10.3168/jds.2012-6536 pubmed: 23684024
Rulquin, H., Verite, R., Guinard-Flament, J. & Pisulewski, P. M. Amino acids truly digestible in the small intestine. Factors of variation in ruminants and consequences on milk protein secretion. Prod. Anim. 14, 201–210 (2001).
Lee, C. et al. Rumen-protected lysine, methionine, and histidine increase milk protein yield in dairy cows fed a metabolizable protein-deficient diet. J. Dairy Sci. 95, 6042–6056, https://doi.org/10.3168/jds.2012-5581 (2012).
doi: 10.3168/jds.2012-5581 pubmed: 22863104
Elwakeel, E. A. et al. Hydroxymethyl lysine is a source of bioavailable lysine for ruminants. J. Anim. Sci. 90, 3898–3904, https://doi.org/10.2527/jas.2011-4975 (2012).
doi: 10.2527/jas.2011-4975 pubmed: 22665639
Paz, H. A. & Kononoff, P. J. Lactation responses and amino acid utilization of dairy cows fed low-fat distillers dried grains with solubles with or without rumen-protected lysine supplementation. J. Dairy Sci. 97, 6519–6530, https://doi.org/10.3168/jds.2014-8315 (2014).
doi: 10.3168/jds.2014-8315 pubmed: 25108862
Awawdeh, M. S. Rumen-protected methionine and lysine: effects on milk production and plasma amino acids of dairy cows with reference to metabolisable protein status. J. Dairy Res. 83, 151–155, https://doi.org/10.1017/S0022029916000108 (2016).
doi: 10.1017/S0022029916000108 pubmed: 27032457
Cabrita, A. R., Dewhurst, R. J., Melo, D. S., Moorby, J. M. & Fonseca, A. J. Effects of dietary protein concentration and balance of absorbable amino acids on productive responses of dairy cows fed corn silage-based diets. J. Dairy Sci. 94, 4647–4656, https://doi.org/10.3168/jds.2010-4097 (2011).
doi: 10.3168/jds.2010-4097 pubmed: 21854937
Whitehouse, N. L., Schwab, C. G. & Brito, A. F. The plasma free amino acid dose-response technique: A proposed methodology for determining lysine relative bioavailability of rumen-protected lysine supplements. J. Dairy Sci. 100, 9585–9601, https://doi.org/10.3168/jds.2017-12695 (2017).
doi: 10.3168/jds.2017-12695 pubmed: 28964520
Robinson, P. H., Swanepoel, N. & Evans, E. Effects of feeding a ruminally protected lysine product, with or without isoleucine, valine and histidine, to lactating dairy cows on their productive performance and plasma amino acid profiles. Anim Feed Sci Technol 161, 75–84, https://doi.org/10.1016/j.anifeedsci.2010.07.017 (2010).
doi: 10.1016/j.anifeedsci.2010.07.017
Robinson, P. H. et al. Ruminally protected lysine or lysine and methionine for lactating dairy cows fed a ration designed to meet requirements for microbial and postruminal protein. J Dairy Sci 81, 1364–1373, https://doi.org/10.3168/jds.S0022-0302(98)75700-5 (1998).
doi: 10.3168/jds.S0022-0302(98)75700-5 pubmed: 9621240
Robinson, P. H. Impacts of manipulating ration metabolizable lysine and methionine levels on the performance of lactating dairy cows: A systematic review of the literature. Livest Sci 127, 115–126, https://doi.org/10.1016/j.livsci.2009.10.003 (2010).
doi: 10.1016/j.livsci.2009.10.003
Schwab, C. G. & Broderick, G. A. A 100-Year Review: Protein and amino acid nutrition in dairy cows. J. Dairy Sci. 100, 10094–10112, https://doi.org/10.3168/jds.2017-13320 (2017).
doi: 10.3168/jds.2017-13320 pubmed: 29153157
Apelo, S. I. A. et al. Effects of reduced dietary protein and supplemental rumen-protected essential amino acids on the nitrogen efficiency of dairy cows. J Dairy Sci 97, 5688–5699, https://doi.org/10.3168/jds.2013-7833 (2014).
doi: 10.3168/jds.2013-7833
McDonald, P. et al. Animal Nutrition. 7 edn, (Pearson Education Limited 2011).
Jenkins, T. C. Lipid metabolism in the rumen. J. Dairy Sci. 76, 3851–3863, https://doi.org/10.3168/jds.S0022-0302(93)77727-9 (1993).
doi: 10.3168/jds.S0022-0302(93)77727-9 pubmed: 8132891
Santos, F. A., Santos, J. E., Theurer, C. B. & Huber, J. T. Effects of rumen-undegradable protein on dairy cow performance: a 12-year literature review. J. Dairy Sci. 81, 3182–3213, https://doi.org/10.3168/jds.S0022-0302(98)75884-9 (1998).
doi: 10.3168/jds.S0022-0302(98)75884-9 pubmed: 9891265
Abbasi, I. H. R. et al. Post-ruminal effects of rumen-protected methionine supplementation with low protein diet using long-term simulation and in vitro digestibility technique. AMB Express 8, 36, https://doi.org/10.1186/s13568-018-0566-7 (2018).
doi: 10.1186/s13568-018-0566-7 pubmed: 29523988 pmcid: 5845091
Koenig, K. M. & Rode, L. M. Ruminal Degradability, Intestinal Disappearance, and Plasma Methionine Response of Rumen-Protected Methionine in Dairy Cows. J. Dairy Sci. 84, 1480–1487, https://doi.org/10.3168/jds.S0022-0302(01)70181-6 (2001).
doi: 10.3168/jds.S0022-0302(01)70181-6 pubmed: 11417708
Autant, P. C., FR), Cartillier, Andre (Commentry, FR), Pigeon, Raymond (Francheville, FR). Compositions for coating feeding stuff additives intended for ruminants and feeding stuff additives thus coated. United States patent (1989).
Stark, P. A. & Abdel-Monem, M. M. Rumen Protected Lysine. United States patent (2011).
Van Winden, S. C., Muller, K. E., Kuiper, R. & Noordhuizen, J. P. Studies on the pH value of abomasal contents in dairy cows during the first 3 weeks after calving. J Vet Med A Physiol Pathol Clin Med 49, 157–160 (2002).
doi: 10.1046/j.1439-0442.2002.00429.x
Swain, P. S., Rajendran, D., Rao, S. B. N. & Dominic, G. Preparation and effects of nano mineral particle feeding in livestock: A review. Vet World 8, 888–891, https://doi.org/10.14202/vetworld.2015.888-891 (2015).
doi: 10.14202/vetworld.2015.888-891 pubmed: 27047170 pmcid: 4774682
Sun, T. M. et al. Engineered Nanoparticles for Drug Delivery in Cancer Therapy. Angew. Chem. Int. Ed. Engl. 53, 12320–12364, https://doi.org/10.1002/anie.201403036 (2014).
doi: 10.1002/anie.201403036 pubmed: 25294565
Kandasamy, G. & Maity, D. Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics. Int J Pharm 496, 191–218, https://doi.org/10.1016/j.ijpharm.2015.10.058 (2015).
doi: 10.1016/j.ijpharm.2015.10.058 pubmed: 26520409
Swierczewska, M., Han, H. S., Kim, K., Park, J. H. & Lee, S. Polysaccharide-based nanoparticles for theranostic nanomedicine. Adv. Drug Deliv. Rev. 99, 70–84, https://doi.org/10.1016/j.addr.2015.11.015 (2016).
doi: 10.1016/j.addr.2015.11.015 pubmed: 26639578
Ashraf, S. et al. Gold-Based Nanomaterials for Applications in Nanomedicine. Top Curr Chem (Cham) 370, 169–202, https://doi.org/10.1007/978-3-319-22942-3_6 (2016).
doi: 10.1007/978-3-319-22942-3_6
Ekambaram, P., Satahali, A. A. H. & Priyanka, K. Solid Lipid Nanoparticles: Review. Sci. Revs. Chem. Commun. 2, 80–102 (2012).
Iqbal, M. A. et al. Nanostructured lipid carriers system: recent advances in drug delivery. Journal of drug targeting 20, 813–830, https://doi.org/10.3109/1061186X.2012.716845 (2012).
doi: 10.3109/1061186X.2012.716845 pubmed: 22931500
Mashaghi, S., Jadidi, T., Koenderink, G. & Mashaghi, A. Lipid nanotechnology. International journal of molecular sciences 14, 4242–4282, https://doi.org/10.3390/ijms14024242 (2013).
doi: 10.3390/ijms14024242 pubmed: 23429269 pmcid: 3588097
Weber, S., Zimmer, A. & Pardeike, J. Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) for pulmonary application: A review of the state of the art. European journal of pharmaceutics and biopharmaceutics: official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V 86, 7–22, https://doi.org/10.1016/j.ejpb.2013.08.013 (2013).
doi: 10.1016/j.ejpb.2013.08.013
Charron, D. M., Chen, J. & Zheng, G. Theranostic lipid nanoparticles for cancer medicine. Cancer Treat. Res. 166, 103–127, https://doi.org/10.1007/978-3-319-16555-4_5 (2015).
doi: 10.1007/978-3-319-16555-4_5 pubmed: 25895866
Owens, F. N. New techniques for studying digestion and absorption of nutrients by ruminants. Fed. Proc. 46, 283–289 (1987).
pubmed: 3542589
Lescoat, P. & Sauvant, D. Development of a mechanistic model for rumen digestion validated using the duodenal flux of amino acids. Reprod. Nutr. Dev. 35, 45–70 (1995).
doi: 10.1051/rnd:19950104
Tarr, B. D. & Yalkowsky, S. H. Enhanced Intestinal Absorption of Cyclosporine in Rats Through the Reduction of Emulsion Droplet Size. Pharm. Res. 6, 40–43, https://doi.org/10.1023/a:1015843517762 (1989).
doi: 10.1023/a:1015843517762 pubmed: 2717516
Albuquerque, J., Moura, C. C., Sarmento, B., Reis, S. & Solid Lipid Nanoparticles: A Potential Multifunctional Approach towards Rheumatoid Arthritis Theranostics. Molecules 20, 11103–11118, https://doi.org/10.3390/molecules200611103 (2015).
doi: 10.3390/molecules200611103 pubmed: 26087258 pmcid: 6272405
Lopes-de-Araujo, J. et al. Oxaprozin-Loaded Lipid Nanoparticles towards Overcoming NSAIDs Side-Effects. Pharm. Res. 33, 301–314, https://doi.org/10.1007/s11095-015-1788-x (2016).
doi: 10.1007/s11095-015-1788-x pubmed: 26350105
Cavalcanti, S. M. T., Nunes, C., Lima, S. A. C., Soares-Sobrinho, J. L. & Reis, S. Multiple Lipid Nanoparticles (MLN), a New Generation of Lipid Nanoparticles for Drug Delivery Systems: Lamivudine-MLN Experimental Design. Pharm. Res. 34, 1204–1216, https://doi.org/10.1007/s11095-017-2136-0 (2017).
doi: 10.1007/s11095-017-2136-0 pubmed: 28315084
Martins, S., Tho, I., Souto, E., Ferreira, D. & Brandl, M. Multivariate design for the evaluation of lipid and surfactant composition effect for optimisation of lipid nanoparticles. European journal of pharmaceutics and biopharmaceutics: official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V 45, 613–623, https://doi.org/10.1016/j.ejps.2011.12.015 (2012).
doi: 10.1016/j.ejps.2011.12.015
Moura, C. C., Segundo, M. A., Neves, J., Reis, S. & Sarmento, B. Co-association of methotrexate and SPIONs into anti-CD64 antibody-conjugated PLGA nanoparticles for theranostic application. Int J Nanomedicine 9, 4911–4922, https://doi.org/10.2147/IJN.S68440 (2014).
doi: 10.2147/IJN.S68440 pubmed: 25364249 pmcid: 4211909
Hung, C.-F., Fang, C.-L., Liao, M.-H. & Fang, J.-Y. The effect of oil components on the physicochemical properties and drug delivery of emulsions: Tocol emulsion versus lipid emulsion. Int J Pharm 335, 193–202, https://doi.org/10.1016/j.ijpharm.2006.11.016 (2007).
doi: 10.1016/j.ijpharm.2006.11.016 pubmed: 17129692
Duangjit, S. et al. Role of the charge, carbon chain length, and content of surfactant on the skin penetration of meloxicam-loaded liposomes. Int J Nanomedicine 9, 2005–2017, https://doi.org/10.2147/IJN.S60674 (2014).
doi: 10.2147/IJN.S60674 pubmed: 24851047 pmcid: 4018314
Buccioni, A., Decandia, M., Minieri, S., Molle, G. & Cabiddu, A. Lipid metabolism in the rumen: New insights on lipolysis and biohydrogenation with an emphasis on the role of endogenous plant factors. Anim Feed Sci Tech 174, 1–25, https://doi.org/10.1016/j.anifeedsci.2012.02.009 (2012).
doi: 10.1016/j.anifeedsci.2012.02.009
Ban, C., Jo, M., Lim, S. & Choi, Y. J. Control of the gastrointestinal digestion of solid lipid nanoparticles using PEGylated emulsifiers. Food Chemistry 239, 442–452, https://doi.org/10.1016/j.foodchem.2017.06.137 (2018).
doi: 10.1016/j.foodchem.2017.06.137 pubmed: 28873589
Mehnert, W. & Mader, K. Solid lipid nanoparticles: production, characterization and applications. Adv. Drug Deliv. Rev. 47, 165–196 (2001).
doi: 10.1016/S0169-409X(01)00105-3
Lodish, H., Berk, A. & Zipursky, S. L. in Molecular Cell Biology (ed. W. H. Freeman) (2000).
Chen, Y., Zhang, H. L., Wang, H. Y. & Yang, K. L. Effects of Dietary Addition of Non-Ionic Surfactants on Ruminal Metabolism and Nutrient Digestion of Chinese Merino Sheep. Asian. J Anim Vet Adv 6, 688–696, https://doi.org/10.3923/ajava.2011.688.696 (2011).
doi: 10.3923/ajava.2011.688.696
Hristov, A. et al. Effect of Tween 80 and salinomycin on ruminal fermentation and nutrient digestion in steers fed a diet containing 70% barley. Canadian Journal of Animal Science - CAN J ANIM SCI 80, 363–372, https://doi.org/10.4141/A99-067 (2000).
doi: 10.4141/A99-067
Kamande, G. M., Baah, J., Cheng, K. J., McAllister, T. A. & Shelford, J. A. Effects of Tween 60 and Tween 80 on protease activity, thiol group reactivity, protein adsorption, and cellulose degradation by rumen microbial enzymes. J Dairy Sci 83, 536–542, https://doi.org/10.3168/jds.S0022-0302(00)74913-7 (2000).
doi: 10.3168/jds.S0022-0302(00)74913-7 pubmed: 10750112
Zhao, C., Shen, X. & Guo, M. Stability of lutein encapsulated whey protein nano-emulsion during storage. PLoS ONE 13, e0192511, https://doi.org/10.1371/journal.pone.0192511 (2018).
doi: 10.1371/journal.pone.0192511 pubmed: 29415071 pmcid: 5802924
Jani, P., Halbert, G. W., Langridge, J. & Florence, A. T. Nanoparticle Uptake by the Rat Gastrointestinal Mucosa: Quantitation and Particle Size Dependency. J. Pharm. Pharmacol. 42, 821–826, https://doi.org/10.1111/j.2042-7158.1990.tb07033.x (1990).
doi: 10.1111/j.2042-7158.1990.tb07033.x pubmed: 1983142
Yin Win, K. & Feng, S.-S. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials 26, 2713–2722, https://doi.org/10.1016/j.biomaterials.2004.07.050 (2005).
doi: 10.1016/j.biomaterials.2004.07.050
Neves, A. R., Lúcio, M., Martins, S., Lima, J. L. C. & Reis, S. Novel resveratrol nanodelivery systems based on lipid nanoparticles to enhance its oral bioavailability. Int J Nanomedicine 8, 177–187, https://doi.org/10.2147/IJN.S37840 (2013).
doi: 10.2147/IJN.S37840 pubmed: 23326193 pmcid: 3544347
Saupe, A., Wissing, S. A., Lenk, A., Schmidt, C. & Muller, R. H. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC)–structural investigations on two different carrier systems. Bio-medical materials and engineering 15, 393–402 (2005).
pubmed: 16179760
Friedman, M. Chemistry, nutrition, and microbiology of D-amino acids. J. Agric. Food Chem. 47, 3457–3479 (1999).
doi: 10.1021/jf990080u
Gordillo-Galeano, A. & Mora-Huertas, C. E. Solid lipid nanoparticles and nanostructured lipid carriers: A review emphasizing on particle structure and drug release. European journal of pharmaceutics and biopharmaceutics: official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V 133, 285–308, https://doi.org/10.1016/j.ejpb.2018.10.017 (2018).
doi: 10.1016/j.ejpb.2018.10.017
Marten, G. C. & Barnes, R. F. Prediction of energy digestibility of forages with in vitro rumen fermentation and fungal enzyme systems [ruminants, domesticated birds]. In: Workshop on Standardization of Analytical Methodology for Feeds: 1979; Ottawa, ON CA. IDRC.
Gwatidzo, L., Botha, B. M. & McCrindle, R. I. Determination of amino acid contents of manketti seeds (Schinziophyton rautanenii) by pre-column derivatisation with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate and RP-HPLC. Food Chem 141, 2163–2169, https://doi.org/10.1016/j.foodchem.2013.04.101 (2013).
doi: 10.1016/j.foodchem.2013.04.101 pubmed: 23870943
Oldekop, M.-L., Herodes, K. & Rebane, R. Comparison of amino acid derivatization reagents for liquid chromatography atmospheric pressure chemical ionization mass spectrometric analysis of seven amino acids in tea extract. Int J Mass Spectrom 421, 189–195, https://doi.org/10.1016/j.ijms.2017.07.004 (2017).
doi: 10.1016/j.ijms.2017.07.004
Liu, S.-J., Xu, J.-J., Ma, C.-L. & Guo, C.-F. A comparative analysis of derivatization strategies for the determination of biogenic amines in sausage and cheese by HPLC. Food Chem 266, 275–283, https://doi.org/10.1016/j.foodchem.2018.06.001 (2018).
doi: 10.1016/j.foodchem.2018.06.001 pubmed: 30381186
Zhang, L. et al. Determination of eight amino acids in mice embryonic stem cells by pre-column derivatization HPLC with fluorescence detection. J Pharm Biomed Anal 66, 356–358, https://doi.org/10.1016/j.jpba.2012.03.014 (2012).
doi: 10.1016/j.jpba.2012.03.014 pubmed: 22482902
Geladi, P. & Kowalski, B. R. Partial least-squares regression: a tutorial. Analytica Chimica Acta 185, 1–17, https://doi.org/10.1016/0003-2670(86)80028-9 (1986).
doi: 10.1016/0003-2670(86)80028-9

Auteurs

João Albuquerque (J)

LAQV, REQUIMTE, Department of Chemical Sciences, FFUP, Rua Jorge Viterbo Ferreira n° 228, 4050-313, Porto, Portugal.
Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto (UP), Rua Jorge Viterbo Ferreira n° 228, 4050-313, Porto, Portugal.

Susana Casal (S)

LAQV, REQUIMTE, Department of Chemical Sciences, FFUP, Rua Jorge Viterbo Ferreira n° 228, 4050-313, Porto, Portugal.

Ricardo Nuno Mendes de Jorge Páscoa (RNMJ)

LAQV, REQUIMTE, Department of Chemical Sciences, FFUP, Rua Jorge Viterbo Ferreira n° 228, 4050-313, Porto, Portugal.

Ingrid Van Dorpe (I)

PREMIX-Especialidades Agrícolas e Pecuárias. Lda, Parque Indústrial II - Neiva, 4935-232, Viana do Castelo, Portugal.

António José Mira Fonseca (AJM)

LAQV, REQUIMTE, ICBAS, UP, Rua Jorge Viterbo Ferreira n° 228, 4050-313, Porto, Portugal.

Ana Rita Jordão Cabrita (ARJ)

LAQV, REQUIMTE, ICBAS, UP, Rua Jorge Viterbo Ferreira n° 228, 4050-313, Porto, Portugal. arcabrita@icbas.up.pt.

Ana Rute Neves (AR)

LAQV, REQUIMTE, Department of Chemical Sciences, FFUP, Rua Jorge Viterbo Ferreira n° 228, 4050-313, Porto, Portugal.
CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal.

Salette Reis (S)

LAQV, REQUIMTE, Department of Chemical Sciences, FFUP, Rua Jorge Viterbo Ferreira n° 228, 4050-313, Porto, Portugal.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH