Orthosteric muscarinic receptor activation by the insect repellent IR3535 opens new prospects in insecticide-based vector control.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
22 04 2020
Historique:
received: 21 11 2019
accepted: 08 04 2020
entrez: 24 4 2020
pubmed: 24 4 2020
medline: 25 11 2020
Statut: epublish

Résumé

The insect repellent IR3535 is one of the important alternative in the fight against mosquito-borne disease such as malaria, dengue, chikungunya, yellow fever and Zika. Using a multidisciplinary approach, we propose the development of an innovative insecticide-based vector control strategy using an unexplored property of IR3535. We have demonstrated that in insect neurosecretory cells, very low concentration of IR3535 induces intracellular calcium rise through cellular mechanisms involving orthosteric/allosteric sites of the M1-muscarinic receptor subtype, G protein βγ subunits, background potassium channel inhibition generating depolarization, which induces voltage-gated calcium channel activation. The resulting internal calcium concentration elevation increases nicotinic receptor sensitivity to the neonicotinoid insecticide thiacloprid. The synergistic interaction between IR3535 and thiacloprid contributes to significantly increase the efficacy of the treatment while reducing concentrations. In this context, IR3535, used as a synergistic agent, seems to promise a new approach in the optimization of the integrated vector management for vector control.

Identifiants

pubmed: 32321987
doi: 10.1038/s41598-020-63957-x
pii: 10.1038/s41598-020-63957-x
pmc: PMC7176678
doi:

Substances chimiques

Insect Proteins 0
Insecticides 0
Receptors, Muscarinic 0
beta-Alanine 11P2JDE17B
insect repellent M 3535 95328-09-9

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

6842

Références

Norris, E. J. & Coats, J. R. Current and Future Repellent Technologies: The Potential of Spatial Repellents and Their Place in Mosquito-Borne Disease Control. Int J Environ Res Public Health 14 (2017).
Schorderet-Weber, S., Noack, S., Selzer, P. M. & Kaminsky, R. Blocking transmission of vector-borne diseases. Int J Parasitol Drugs Drug Resist 7, 90–109 (2017).
pubmed: 28189117 pmcid: 5302141 doi: 10.1016/j.ijpddr.2017.01.004
Tavares, M. et al. Trends in insect repellent formulations: A review. Int J Pharm 539, 190–209 (2018).
pubmed: 29410208 doi: 10.1016/j.ijpharm.2018.01.046 pmcid: 29410208
Sparks, J. T. & Dickens, J. C. Mini review: Gustatory reception of chemicals affecting host feeding in aedine mosquitoes. Pestic Biochem Physiol 142, 15–20 (2017).
pubmed: 29107239 doi: 10.1016/j.pestbp.2016.12.009 pmcid: 29107239
Sparks, J. T. et al. Membrane Proteins Mediating Reception and Transduction in Chemosensory Neurons in Mosquitoes. Front Physiol 9, 1309 (2018).
pubmed: 30294282 pmcid: 6158332 doi: 10.3389/fphys.2018.01309
Kaupp, U. B. Olfactory signalling in vertebrates and insects: differences and commonalities. Nat. Rev. Neurosci. 11, 188–200 (2010).
pubmed: 20145624 doi: 10.1038/nrn2789 pmcid: 20145624
Leal, W. S. Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annu. Rev. Entomol. 58, 373–391 (2013).
pubmed: 23020622 doi: 10.1146/annurev-ento-120811-153635 pmcid: 23020622
DeGennaro, M. et al. orco mutant mosquitoes lose strong preference for humans and are not repelled by volatile DEET. Nature 498, 487–491 (2013).
pubmed: 23719379 pmcid: 3696029 doi: 10.1038/nature12206
Ditzen, M., Pellegrino, M. & Vosshall, L. B. Insect odorant receptors are molecular targets of the insect repellent DEET. Science 319, 1838–1842 (2008).
pubmed: 18339904 doi: 10.1126/science.1153121 pmcid: 18339904
Kwon, J. Y., Dahanukar, A., Weiss, L. A. & Carlson, J. R. Molecular and Cellular Organization of the Taste System in the Drosophila Larva. Journal of Neuroscience 31, 15300–15309 (2011).
pubmed: 22031876 doi: 10.1523/JNEUROSCI.3363-11.2011 pmcid: 22031876
Lupi, E., Hatz, C. & Schlagenhauf, P. The efficacy of repellents against Aedes, Anopheles, Culex and Ixodes spp. - a literature review. Travel Med Infect Dis 11, 374–411 (2013).
pubmed: 24201040 doi: 10.1016/j.tmaid.2013.10.005 pmcid: 24201040
Pellegrino, M., Steinbach, N., Stensmyr, M. C., Hansson, B. S. & Vosshall, L. B. A natural polymorphism alters odour and DEET sensitivity in an insect odorant receptor. Nature 478, 511–514 (2011).
pubmed: 21937991 pmcid: 3203342 doi: 10.1038/nature10438
Pitts, R. J., Derryberry, S. L., Zhang, Z. & Zwiebel, L. J. Variant Ionotropic Receptors in the Malaria Vector Mosquito Anopheles gambiae Tuned to Amines and Carboxylic Acids. Sci Rep 7, 40297 (2017).
pubmed: 28067294 pmcid: 5220300 doi: 10.1038/srep40297
Stanczyk, N. M., Brookfield, J. F. Y., Ignell, R., Logan, J. G. & Field, L. M. Behavioral insensitivity to DEET in Aedes aegypti is a genetically determined trait residing in changes in sensillum function. Proc. Natl. Acad. Sci. USA 107, 8575–8580 (2010).
pubmed: 20439757 doi: 10.1073/pnas.1001313107 pmcid: 20439757
Syed, Z. & Leal, W. S. Mosquitoes smell and avoid the insect repellent DEET. Proc. Natl. Acad. Sci. USA 105, 13598–13603 (2008).
pubmed: 18711137 doi: 10.1073/pnas.0805312105 pmcid: 18711137
Wicher, D. Tuning Insect Odorant Receptors. Front Cell Neurosci 12, 94 (2018).
pubmed: 29674957 pmcid: 5895647 doi: 10.3389/fncel.2018.00094
Corbel, V. et al. Evidence for inhibition of cholinesterases in insect and mammalian nervous systems by the insect repellent deet. BMC Biol. 7, 47 (2009).
pubmed: 19656357 pmcid: 2739159 doi: 10.1186/1741-7007-7-47
Abd-Ella, A. et al. The Repellent DEET Potentiates Carbamate Effects via Insect Muscarinic Receptor Interactions: An Alternative Strategy to Control Insect Vector-Borne Diseases. PLoS ONE 10, e0126406 (2015).
pubmed: 25961834 pmcid: 4427492 doi: 10.1371/journal.pone.0126406
DeGennaro, M. The mysterious multi-modal repellency of DEET. Fly (Austin) 9, 45–51 (2015).
doi: 10.1080/19336934.2015.1079360
Sanford, J. L., Barski, S. A., Seen, C. M., Dickens, J. C. & Shields, V. D. C. Neurophysiological and behavioral responses of gypsy moth larvae to insect repellents: DEET, IR3535, and picaridin. PLoS ONE 9, e99924 (2014).
pubmed: 24955823 pmcid: 4067281 doi: 10.1371/journal.pone.0099924
Swale, D. R., Sun, B., Tong, F. & Bloomquist, J. R. Neurotoxicity and mode of action of N, N-diethyl-meta-toluamide (DEET). PLoS ONE 9, e103713 (2014).
pubmed: 25101788 pmcid: 4125160 doi: 10.1371/journal.pone.0103713
Legeay, S., Clere, N., Apaire-Marchais, V., Faure, S. & Lapied, B. Unusual modes of action of the repellent DEET in insects highlight some human side effects. Eur. J. Pharmacol. 825, 92–98 (2018).
pubmed: 29477656 doi: 10.1016/j.ejphar.2018.02.033 pmcid: 29477656
Raymond, V., Goven, D., Benzidane, Y., List, O. & Lapied, B. Influence of Cellular and Molecular Factors on Membrane Target Sensitivity to Insecticides. Curr. Med. Chem. 24, 2974–2987 (2017).
pubmed: 28302007 doi: 10.2174/0929867324666170316111315 pmcid: 28302007
Deshayes, C. et al. Synergistic agent and intracellular calcium, a successful partnership in the optimization of insecticide efficacy. Curr Opin Insect Sci 30, 52–58 (2018).
pubmed: 30553485 doi: 10.1016/j.cois.2018.09.007 pmcid: 30553485
Wicher, D., Walther, C. & Wicher, C. Non-synaptic ion channels in insects–basic properties of currents and their modulation in neurons and skeletal muscles. Prog. Neurobiol. 64, 431–525 (2001).
pubmed: 11301158 doi: 10.1016/S0301-0082(00)00066-6 pmcid: 11301158
Grolleau, F. et al. Indirect activation of neuronal noncapacitative Ca2+ entry is the final step involved in the neurotoxic effect of Tityus serrulatus scorpion beta-toxin. Eur. J. Neurosci. 23, 1465–1478 (2006).
pubmed: 16553610 doi: 10.1111/j.1460-9568.2006.04667.x pmcid: 16553610
Grolleau, F. & Lapied, B. Dorsal unpaired median neurones in the insect central nervous system: towards a better understanding of the ionic mechanisms underlying spontaneous electrical activity. J. Exp. Biol. 203, 1633–1648 (2000).
pubmed: 10804154 pmcid: 10804154
Khan, S. M. et al. The expanding roles of Gβγ subunits in G protein-coupled receptor signaling and drug action. Pharmacol. Rev. 65, 545–577 (2013).
pubmed: 23406670 doi: 10.1124/pr.111.005603 pmcid: 23406670
Lehmann, D. M., Seneviratne, A. M. P. B. & Smrcka, A. V. Small molecule disruption of G protein beta gamma subunit signaling inhibits neutrophil chemotaxis and inflammation. Mol. Pharmacol. 73, 410–418 (2008).
pubmed: 18006643 doi: 10.1124/mol.107.041780 pmcid: 18006643
Belkouch, M. et al. The chemokine CCL2 increases Nav1.8 sodium channel activity in primary sensory neurons through a Gβγ-dependent mechanism. J. Neurosci. 31, 18381–18390 (2011).
pubmed: 22171040 pmcid: 6623900 doi: 10.1523/JNEUROSCI.3386-11.2011
Li, Z. et al. The inhibition of high-voltage-activated calcium current by activation of MrgC11 involves phospholipase C-dependent mechanisms. Neuroscience 300, 393–403 (2015).
pubmed: 26022362 pmcid: 4485588 doi: 10.1016/j.neuroscience.2015.05.043
Yu, J., Zhou, Y., Tanaka, I. & Yao, M. Roll: a new algorithm for the detection of protein pockets and cavities with a rolling probe sphere. Bioinformatics 26, 46–52 (2010).
pubmed: 19846440 doi: 10.1093/bioinformatics/btp599 pmcid: 19846440
Ma, L. et al. Selective activation of the M1 muscarinic acetylcholine receptor achieved by allosteric potentiation. Proc. Natl. Acad. Sci. USA 106, 15950–15955 (2009).
pubmed: 19717450 doi: 10.1073/pnas.0900903106 pmcid: 19717450
Abdul-Ridha, A. et al. Mechanistic insights into allosteric structure-function relationships at the M1 muscarinic acetylcholine receptor. J. Biol. Chem. 289, 33701–33711 (2014).
pubmed: 25326383 pmcid: 4246120 doi: 10.1074/jbc.M114.604967
Bodereau-Dubois, B. et al. Transmembrane potential polarization, calcium influx, and receptor conformational state modulate the sensitivity of the imidacloprid-insensitive neuronal insect nicotinic acetylcholine receptor to neonicotinoid insecticides. J. Pharmacol. Exp. Ther. 341, 326–339 (2012).
pubmed: 22286500 doi: 10.1124/jpet.111.188060 pmcid: 22286500
Ihara, M., Buckingham, S. D., Matsuda, K. & Sattelle, D. B. Modes of Action, Resistance and Toxicity of Insecticides Targeting Nicotinic Acetylcholine Receptors. Curr. Med. Chem. 24, 2925–2934 (2017).
pubmed: 28176635 doi: 10.2174/0929867324666170206142019 pmcid: 28176635
Casida, J. E. Neonicotinoids and Other Insect Nicotinic Receptor Competitive Modulators: Progress and Prospects. Annu. Rev. Entomol. 63, 125–144 (2018).
pubmed: 29324040 doi: 10.1146/annurev-ento-020117-043042 pmcid: 29324040
Apaire-Marchais, V. et al. Virus and calcium: an unexpected tandem to optimize insecticide efficacy. Environ Microbiol Rep 8, 168–178 (2016).
pubmed: 26743399 doi: 10.1111/1758-2229.12377 pmcid: 26743399
Thany, S. H., Courjaret, R. & Lapied, B. Effect of calcium on nicotine-induced current expressed by an atypical alpha-bungarotoxin-insensitive nAChR2. Neurosci. Lett. 438, 317–321 (2008).
pubmed: 18485593 doi: 10.1016/j.neulet.2008.04.065 pmcid: 18485593
Calas-List, D., List, O. & Thany, S. H. Nornicotine application on cockroach dorsal unpaired median neurons induces two distinct ionic currents: implications of different nicotinic acetylcholine receptors. Neurosci. Lett. 518, 64–68 (2012).
pubmed: 22580207 doi: 10.1016/j.neulet.2012.04.058 pmcid: 22580207
Islam, J., Zaman, K., Duarah, S., Raju, P. S. & Chattopadhyay, P. Mosquito repellents: An insight into the chronological perspectives and novel discoveries. Acta Trop. 167, 216–230 (2017).
pubmed: 28040483 doi: 10.1016/j.actatropica.2016.12.031 pmcid: 28040483
Sharan, S. & Hill, C. A. Potential of GPCR-Targeting Insecticides for Control of Arthropod Vectors. in ACS Symposium Series (eds. Gross, A. D., Ozoe, Y. & Coats, J. R.) vol. 1265 55–84 (American Chemical Society, 2017).
Gross, A. D. & Bloomquist, J. R. Characterizing Permethrin and Etofenprox Resistance in Two Common Laboratory Strains of Anopheles gambiae (Diptera: Culicidae). Insects 9, (2018).
Bohbot, J. D. et al. Multiple activities of insect repellents on odorant receptors in mosquitoes. Med. Vet. Entomol. 25, 436–444 (2011).
pubmed: 21395633 doi: 10.1111/j.1365-2915.2011.00949.x pmcid: 21395633
Bohbot, J. D. & Dickens, J. C. Odorant receptor modulation: Ternary paradigm for mode of action of insect repellents. Neuropharmacology 62, 2086–2095 (2012).
pubmed: 22269900 doi: 10.1016/j.neuropharm.2012.01.004 pmcid: 22269900
Sparks, J. T. & Dickens, J. C. Electrophysiological Responses of Gustatory Receptor Neurons on the Labella of the Common Malaria Mosquito, Anopheles quadrimaculatus (Diptera: Culicidae). J. Med. Entomol. https://doi.org/10.1093/jme/tjw073 (2016).
Inanobe, A. & Kurachi, Y. Membrane channels as integrators of G-protein-mediated signaling. Biochim. Biophys. Acta 1838, 521–531 (2014).
pubmed: 24028827 doi: 10.1016/j.bbamem.2013.08.018 pmcid: 24028827
Schwartz, T. W. & Holst, B. Allosteric enhancers, allosteric agonists and ago-allosteric modulators: where do they bind and how do they act? Trends Pharmacol. Sci. 28, 366–373 (2007).
pubmed: 17629958 doi: 10.1016/j.tips.2007.06.008 pmcid: 17629958
Weis, W. I. & Kobilka, B. K. The Molecular Basis of G Protein-Coupled Receptor Activation. Annu. Rev. Biochem. 87, 897–919 (2018).
pubmed: 29925258 pmcid: 6535337 doi: 10.1146/annurev-biochem-060614-033910
Pitti Caballero, J. et al. Nanoencapsulated deltamethrin as synergistic agent potentiates insecticide effect of indoxacarb through an unusual neuronal calcium-dependent mechanism. Pestic Biochem Physiol 157, 1–12. Patent number 10492491 (2019).
Lees, R. et al. A testing cascade to identify repurposed insecticides for next-generation vector control tools: screening a panel of chemistries with novel modes of action against a malaria vector. Gates Open Res 3, 1464. Patent number 10390532 (2019).
Goulu, M., Apaire-Marchais, V., List, O., Raymond, V. & Lapied, B. Insecticide composition including a synergistic agent. Patent number 10492491 (2019).
Goulu, M., Apaire-Marchais, V., List, O., Raymond, V. & Lapied, B. Insecticide composition including thiamethoxam and a synergistic agent. Patent number 10390532 (2019).
Ihara, M. & Matsuda, K. Neonicotinoids: molecular mechanisms of action, insights into resistance and impact on pollinators. Curr Opin Insect Sci 30, 86–92 (2018).
pubmed: 30553491 doi: 10.1016/j.cois.2018.09.009 pmcid: 30553491
Taillebois, E., Cartereau, A., Jones, A. K. & Thany, S. H. Neonicotinoid insecticides mode of action on insect nicotinic acetylcholine receptors using binding studies. Pestic Biochem Physiol 151, 59–66 (2018).
pubmed: 30704714 doi: 10.1016/j.pestbp.2018.04.007 pmcid: 30704714
Lapied, B., Malécot, C. O. & Pelhate, M. Patch-clamp Study of the Properties of the Sodium Current in Cockroach Single Isolated Adult Aminergic Neurones. JEB 151, 387–403 (1989).
Courjaret, R., Grolleau, F. & Lapied, B. Two distinct calcium-sensitive and -insensitive PKC up- and down-regulate an alpha-bungarotoxin-resistant nAChR1 in insect neurosecretory cells (DUM neurons). Eur. J. Neurosci. 17, 2023–2034 (2003).
pubmed: 12786968 doi: 10.1046/j.1460-9568.2003.02644.x pmcid: 12786968
Courjaret, R. & Lapied, B. Complex intracellular messenger pathways regulate one type of neuronal alpha-bungarotoxin-resistant nicotinic acetylcholine receptors expressed in insect neurosecretory cells (dorsal unpaired median neurons). Mol. Pharmacol. 60, 80–91 (2001).
pubmed: 11408603 doi: 10.1124/mol.60.1.80 pmcid: 11408603
Koes, D. R., Baumgartner, M. P. & Camacho, C. J. Lessons Learned in Empirical Scoring with smina from the CSAR 2011 Benchmarking Exercise. J. Chem. Inf. Model. 53, 1893–1904 (2013).
pubmed: 23379370 pmcid: 3726561 doi: 10.1021/ci300604z
Trott, O. & Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31, 455–461 (2010).
pubmed: 3041641 pmcid: 3041641
Wenzel, S. E. et al. PEBP1 Wardens Ferroptosis by Enabling Lipoxygenase Generation of Lipid Death Signals. Cell 171, 628–641.e26 (2017).
pubmed: 29053969 pmcid: 5683852 doi: 10.1016/j.cell.2017.09.044
Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J Mol Graph 14(33–38), 27–28 (1996).
Bakan, A. et al. Evol and ProDy for bridging protein sequence evolution and structural dynamics. Bioinformatics 30, 2681–2683 (2014).
pubmed: 24849577 pmcid: 4155247 doi: 10.1093/bioinformatics/btu336

Auteurs

Eléonore Moreau (E)

Laboratoire Signalisation Fonctionnelle des Canaux Ioniques et des Récepteurs (SiFCIR), UPRES EA 2647, USC INRA 1330, SFR QUASAV 4207, UFR Sciences, Université d'Angers, 2 boulevard Lavoisier, 49045, Angers, cedex, France.

Karolina Mikulska-Ruminska (K)

Institute of Physics, Faculty of Physics, Astronomy and Informatics, N. Copernicus University, Torun, Poland.

Mathilde Goulu (M)

Laboratoire Signalisation Fonctionnelle des Canaux Ioniques et des Récepteurs (SiFCIR), UPRES EA 2647, USC INRA 1330, SFR QUASAV 4207, UFR Sciences, Université d'Angers, 2 boulevard Lavoisier, 49045, Angers, cedex, France.

Stéphane Perrier (S)

Laboratoire Signalisation Fonctionnelle des Canaux Ioniques et des Récepteurs (SiFCIR), UPRES EA 2647, USC INRA 1330, SFR QUASAV 4207, UFR Sciences, Université d'Angers, 2 boulevard Lavoisier, 49045, Angers, cedex, France.

Caroline Deshayes (C)

Laboratoire Signalisation Fonctionnelle des Canaux Ioniques et des Récepteurs (SiFCIR), UPRES EA 2647, USC INRA 1330, SFR QUASAV 4207, UFR Sciences, Université d'Angers, 2 boulevard Lavoisier, 49045, Angers, cedex, France.

Maria Stankiewicz (M)

Faculty of Biological and Veternary Sciences, N. Copernicus University, Torun, Poland.

Véronique Apaire-Marchais (V)

Laboratoire Signalisation Fonctionnelle des Canaux Ioniques et des Récepteurs (SiFCIR), UPRES EA 2647, USC INRA 1330, SFR QUASAV 4207, UFR Sciences, Université d'Angers, 2 boulevard Lavoisier, 49045, Angers, cedex, France.

Wieslaw Nowak (W)

Institute of Physics, Faculty of Physics, Astronomy and Informatics, N. Copernicus University, Torun, Poland.

Bruno Lapied (B)

Laboratoire Signalisation Fonctionnelle des Canaux Ioniques et des Récepteurs (SiFCIR), UPRES EA 2647, USC INRA 1330, SFR QUASAV 4207, UFR Sciences, Université d'Angers, 2 boulevard Lavoisier, 49045, Angers, cedex, France. bruno.lapied@univ-angers.fr.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH