Low Serum Uric Acid Levels Promote Hypertensive Intracerebral Hemorrhage by Disrupting the Smooth Muscle Cell-Elastin Contractile Unit and Upregulating the Erk1/2-MMP Axis.
Erk1/2
Intracerebral hemorrhage
MMPs
Uric acid
Journal
Translational stroke research
ISSN: 1868-601X
Titre abrégé: Transl Stroke Res
Pays: United States
ID NLM: 101517297
Informations de publication
Date de publication:
10 2020
10 2020
Historique:
received:
16
07
2019
accepted:
12
02
2020
revised:
07
02
2020
pubmed:
24
4
2020
medline:
20
7
2021
entrez:
24
4
2020
Statut:
ppublish
Résumé
Intracerebral hemorrhage (ICH) is a catastrophic stroke with high mortality, and the mechanism underlying ICH is largely unknown. Previous studies have shown that high serum uric acid (SUA) levels are an independent risk factor for hypertension, cardiovascular disease (CVD), and ischemic stroke. However, our metabolomics data showed that SUA levels were lower in recurrent intracerebral hemorrhage (R-ICH) patients than in ICH patients, indicating that lower SUA might contribute to ICH. In this study, we confirmed the association between low SUA levels and the risk for recurrence of ICH and for cardiac-cerebral vascular mortality in hypertensive patients. To determine the mechanism by which low SUA effects ICH pathogenesis, we developed the first low SUA mouse model and conducted transcriptome profiling of the cerebrovasculature of ICH mice. When combining these assessments with pathological morphology, we found that low SUA levels led to ICH in mice with angiotensin II (Ang II)-induced hypertension and aggravated the pathological progression of ICH. In vitro, our results showed that p-Erk1/2-MMP axis were involved in the low UA-induce degradation of elastin, and that physiological concentrations of UA and p-Erk1/2-specific inhibitor exerted a protective role. This is the first report describing to the disruption of the smooth muscle cell (SMC)-elastin contractile units in ICH. Most importantly, we revealed that the upregulation of the p-Erk1/2-MMP axis, which promotes the degradation of elastin, plays a vital role in mediating low SUA levels to exacerbate cerebrovascular rupture during the ICH process.
Identifiants
pubmed: 32323149
doi: 10.1007/s12975-020-00791-3
pii: 10.1007/s12975-020-00791-3
doi:
Substances chimiques
Uric Acid
268B43MJ25
Matrix Metalloproteinases
EC 3.4.24.-
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1077-1094Subventions
Organisme : National Natural Science Foundation of China
ID : 81670386
Pays : International
Organisme : National Natural Science Foundation of China
ID : 91539113
Pays : International
Organisme : CAMS Innovation Fund for Medical Sciences
ID : CAMS-I2M, 2016-I2M-1-015
Pays : International
Organisme : National Basic Research Program of China (973 Program)
ID : 2014CB541600 to JC
Pays : International
Références
Qureshi AI, Mendelow AD, Hanley DF. Intracerebral haemorrhage. Lancet. 2009;373(9675):1632–44. https://doi.org/10.1016/S0140-6736(09)60371-8 .
doi: 10.1016/S0140-6736(09)60371-8
pubmed: 19427958
pmcid: 3138486
Ariesen MJ, Claus SP, Rinkel GJ, Algra A. Risk factors for intracerebral hemorrhage in the general population: a systematic review. Stroke. 2003;34(8):2060–5. https://doi.org/10.1161/01.STR.0000080678.09344.8D .
doi: 10.1161/01.STR.0000080678.09344.8D
pubmed: 12843354
Wang W, Jiang B, Sun H, Ru X, Sun D, Wang L, et al. Prevalence, incidence, and mortality of stroke in China: results from a nationwide population-based survey of 480 687 adults. Circulation. 2017;135(8):759–71. https://doi.org/10.1161/CIRCULATIONAHA.116.025250 .
doi: 10.1161/CIRCULATIONAHA.116.025250
pubmed: 28052979
Zia E, Hedblad B, Pessah-Rasmussen H, Berglund G, Janzon L, Engstrom G. Blood pressure in relation to the incidence of cerebral infarction and intracerebral hemorrhage. Hypertensive hemorrhage: debated nomenclature is still relevant. Stroke. 2007;38(10):2681–5. https://doi.org/10.1161/STROKEAHA.106.479725 .
doi: 10.1161/STROKEAHA.106.479725
pubmed: 17761929
Feig DI, Kang DH, Johnson RJ. Uric acid and cardiovascular risk. N Engl J Med. 2008;359(17):1811–21. https://doi.org/10.1056/NEJMra0800885 .
doi: 10.1056/NEJMra0800885
pubmed: 18946066
pmcid: 2684330
Gerber Y, Tanne D, Medalie JH, Goldbourt U. Serum uric acid and long-term mortality from stroke, coronary heart disease and all causes. Eur J Cardiovasc Prev Rehabil. 2006;13(2):193–8. https://doi.org/10.1097/01.hjr.0000192745.26973.00 .
doi: 10.1097/01.hjr.0000192745.26973.00
pubmed: 16575272
Gu J, Fan YQ, Zhang HL, Zhang JF, Wang CQ. Serum uric acid is associated with incidence of heart failure with preserved ejection fraction and cardiovascular events in patients with arterial hypertension. J Clin Hypertens. 2018;20(3):560–7. https://doi.org/10.1111/jch.13210 .
doi: 10.1111/jch.13210
Norvik JV, Schirmer H, Ytrehus K, Storhaug HM, Jenssen TG, Eriksen BO, et al. Uric acid predicts mortality and ischaemic stroke in subjects with diastolic dysfunction: the Tromso Study 1994-2013. ESC Heart Fail. 2017;4(2):154–61. https://doi.org/10.1002/ehf2.12134 .
doi: 10.1002/ehf2.12134
pubmed: 28451452
pmcid: 5396037
Anand NN, Padma V, Prasad A, Alam KC, Javid MS. Serum uric acid in new and recent onset primary hypertension. J Pharm Bioall Sci. 2015;7(Suppl 1):S4–8. https://doi.org/10.4103/0975-7406.155763 .
doi: 10.4103/0975-7406.155763
Iida S, Baumbach GL, Lavoie JL, Faraci FM, Sigmund CD, Heistad DD. Spontaneous stroke in a genetic model of hypertension in mice. Stroke. 2005;36(6):1253–8. https://doi.org/10.1161/01.str.0000167694.58419.a2 .
doi: 10.1161/01.str.0000167694.58419.a2
pubmed: 15914769
Wakisaka Y, Chu Y, Miller JD, Rosenberg GA, Heistad DD. Spontaneous intracerebral hemorrhage during acute and chronic hypertension in mice. J Cereb Blood Flow Metab. 2010;30(1):56–69. https://doi.org/10.1038/jcbfm.2009.183 .
doi: 10.1038/jcbfm.2009.183
pubmed: 19724290
Wakisaka Y, Chu Y, Miller JD, Rosenberg GA, Heistad DD. Critical role for copper/zinc-superoxide dismutase in preventing spontaneous intracerebral hemorrhage during acute and chronic hypertension in mice. Stroke. 2010;41(4):790.
doi: 10.1161/STROKEAHA.109.569616
pubmed: 20150548
pmcid: 2847648
Meissner A, Minnerup J, Soria G, Planas AM. Structural and functional brain alterations in a murine model of angiotensin II-induced hypertension. J Neurochem. 2017;140(3):509–21. https://doi.org/10.1111/jnc.13905 .
doi: 10.1111/jnc.13905
pubmed: 27874975
Yang R, Zhang Y, Huang D, Luo X, Zhang L, Zhu X, et al. Miconazole protects blood vessels from MMP9-dependent rupture and hemorrhage. Dis Model Mech. 2017;10(3):337–48. https://doi.org/10.1242/dmm.027268 .
doi: 10.1242/dmm.027268
pubmed: 28153846
pmcid: 5374319
Li Z, Sun L, Zhang H, Liao Y, Wang D, Zhao B, et al. Elevated plasma homocysteine was associated with hemorrhagic and ischemic stroke, but methylenetetrahydrofolate reductase gene C677T polymorphism was a risk factor for thrombotic stroke: a Multicenter Case-Control Study in China. Stroke. 2003;34(9):2085.
doi: 10.1161/01.STR.0000086753.00555.0D
pubmed: 12907815
Yamakawa H, Jezova M, Ando H, Saavedra JM. Normalization of endothelial and inducible nitric oxide synthase expression in brain microvessels of spontaneously hypertensive rats by angiotensin II AT1 receptor inhibition. J Cereb Blood Flow Metab. 2003;23(3):371.
doi: 10.1097/01.WCB.0000047369.05600.03
pubmed: 12621312
Bengrine A, Da SC, Massy ZA, Boullier A, Bugnicourt JM, Chillon JM. Cerebral arterioles preparation and PECAM-1 expression in C57BL/6J and ApoE-/- mice. Front Biosci. 2011;16(2):2367.
doi: 10.2741/3859
Helske S, Syvaranta S, Kupari M, Lappalainen J, Laine M, Lommi J, et al. Possible role for mast cell-derived cathepsin G in the adverse remodelling of stenotic aortic valves. Eur Heart J. 2006;27(12):1495–504. https://doi.org/10.1093/eurheartj/ehi706 .
doi: 10.1093/eurheartj/ehi706
pubmed: 16401677
Krishna SM, Seto SW, Jose RJ, Biros E, Moran CS, Wang Y, et al. A peptide antagonist of thrombospondin-1 promotes abdominal aortic aneurysm progression in the angiotensin II-infused apolipoprotein-E-deficient mouse. Arterioscler Thromb Vasc Biol. 2015;35(2):389–98. https://doi.org/10.1161/ATVBAHA.114.304732 .
doi: 10.1161/ATVBAHA.114.304732
pubmed: 25524772
Yuan F, Wang Y, Guan Y, Ren Y, Lu H, Xiao T, et al. Real-time imaging of mouse lenticulostriate artery following brain ischemia. Front Biosci (Elite Ed). 2013;5:517–24. https://doi.org/10.2741/e633 .
doi: 10.2741/e633
Tseng WC, Chen YT, Ou SM, Shih CJ, Tarng DC, Taiwan Geriatric Kidney Disease Research G. U-shaped association between serum uric acid levels with cardiovascular and all-cause mortality in the elderly: the role of malnourishment. J Am Heart Assoc. 2018;7(4). https://doi.org/10.1161/JAHA.117.007523 .
Zhou L, Liu C, Wang Z, Shen H, Wen Z, Chen D, et al. Pannexin-1 is involved in neuronal apoptosis and degeneration in experimental intracerebral hemorrhage in rats. Mol Med Rep. 2018;17(4):5684–91. https://doi.org/10.3892/mmr.2018.8624 .
doi: 10.3892/mmr.2018.8624
pubmed: 29484398
pmcid: 5866010
Han X, Zhao X, Lan X, Li Q, Gao Y, Liu X, et al. 20-HETE synthesis inhibition promotes cerebral protection after intracerebral hemorrhage without inhibiting angiogenesis. J Cereb Blood Flow Metab. 2018. https://doi.org/10.1177/0271678X18762645 .
Zhou Y, Wang S, Li Y, Yu S, Zhao Y. SIRT1/PGC-1alpha signaling promotes mitochondrial functional recovery and reduces apoptosis after intracerebral hemorrhage in rats. Front Mol Neurosci. 2017;10:443. https://doi.org/10.3389/fnmol.2017.00443 .
doi: 10.3389/fnmol.2017.00443
pubmed: 29375306
Hanjin C, Tao L, Pengfei L, Ali Y, Huajun Z, Jiekun L, et al. Altered long noncoding RNA and messenger RNA expression in experimental intracerebral hemorrhage-a preliminary study. Cell Physiol Biochem. 2018;45(3):1284–301. https://doi.org/10.1159/000487464 .
doi: 10.1159/000487464
pubmed: 29448258
Sadoshima S, Busija D, Brody M, Heistad D. Sympathetic nerves protect against stroke in stroke-prone hypertensive rats. A preliminary report. Hypertension. 1981;3(3 Pt 2):I124–7.
pubmed: 7262975
MacLellan CL, Silasi G, Poon CC, Edmundson CL, Buist R, Peeling J, et al. Intracerebral hemorrhage models in rat: comparing collagenase to blood infusion. J Cereb Blood Flow Metab. 2008;28(3):516–25. https://doi.org/10.1038/sj.jcbfm.9600548 .
doi: 10.1038/sj.jcbfm.9600548
pubmed: 17726491
Hsieh JT, Lei B, Sheng H, Venkatraman T, Lascola CD, Warner DS, et al. Sex-specific effects of progesterone on early outcome of intracerebral hemorrhage. Neuroendocrinology. 2016;103(5):518–30. https://doi.org/10.1159/000440883 .
doi: 10.1159/000440883
pubmed: 26356626
Cao S, Hua Y, Keep RF, Chaudhary N, Xi G. Minocycline effects on intracerebral hemorrhage-induced iron overload in aged rats: brain iron quantification with magnetic resonance imaging. Stroke. 2018. https://doi.org/10.1161/STROKEAHA.117.019860 .
Toth P, Tarantini S, Springo Z, Tucsek Z, Gautam T, Giles CB, et al. Aging exacerbates hypertension-induced cerebral microhemorrhages in mice: role of resveratrol treatment in vasoprotection. Aging Cell. 2015;14(3):400–8. https://doi.org/10.1111/acel.12315 .
doi: 10.1111/acel.12315
pubmed: 25677910
pmcid: 4406669
Lastra G, Manrique C, Jia G, Aroor AR, Hayden MR, Barron BJ, et al. Xanthine oxidase inhibition protects against Western diet-induced aortic stiffness and impaired vasorelaxation in female mice. Am J Physiol Regul Integr Comp Physiol. 2017;313(2):R67–77. https://doi.org/10.1152/ajpregu.00483.2016 .
doi: 10.1152/ajpregu.00483.2016
pubmed: 28539355
pmcid: 5582952
Berry C, Hamilton CA, Brosnan MJ, Magill FG, Berg GA, Mcmurray JJV, et al. Investigation into the sources of superoxide in human blood vessels angiotensin II increases superoxide production in human internal mammary arteries. Circulation. 2000;101(18):2206.
doi: 10.1161/01.CIR.101.18.2206
pubmed: 10801763
Dawson J, Quinn T, Walters M. Uric acid reduction: a new paradigm in the management of cardiovascular risk? Curr Med Chem. 2007;14(17).
Muir SW, Harrow C, Dawson J, Lees KR, Weir CJ, Sattar N, et al. Allopurinol use yields potentially beneficial effects on inflammatory indices in those with recent ischemic stroke: a randomized, double-blind, placebo-controlled trial. Stroke. 2008;39(12):3303–7.
doi: 10.1161/STROKEAHA.108.519793
pubmed: 18845806
Khan F, George J, Wong K, Mcswiggan S, Struthers AD, Belch JJ. Allopurinol treatment reduces arterial wave reflection in stroke survivors. Cardiovasc Ther. 2008;26(4):247–52.
doi: 10.1111/j.1755-5922.2008.00057.x
pubmed: 19035875
Dawson J, Quinn TC, Lees K, Weir C, Cleland S, Walters M. Allopurinol and nitric oxide activity in the cerebral circulation of those with diabetes: a randomized trial. Diabetes Care. 2009;32(1):135–7.
doi: 10.2337/dc08-1179
pubmed: 18945924
pmcid: 2606848
Mazali FC, Johnson RJ, Mazzali M. Use of uric acid-lowering agents limits experimental cyclosporine nephropathy. Nephron Exp Nephrol. 2011;120(1):12–9.
doi: 10.1159/000330274
Yamashiro Y, Yanagisawa H. Crossing bridges between extra- and intra-cellular events in thoracic aortic aneurysms. J Atheroscler Thromb. 2018;25(2):99–110. https://doi.org/10.5551/jat.RV17015 .
doi: 10.5551/jat.RV17015
pubmed: 28943527
pmcid: 5827090
Chalouhi N, Hoh BL, Hasan D. Review of cerebral aneurysm formation, growth, and rupture. Stroke. 2013;44(12):3613–22. https://doi.org/10.1161/STROKEAHA.113.002390 .
doi: 10.1161/STROKEAHA.113.002390
pubmed: 24130141
Nuki Y, Tsou TL, Kurihara C, Kanematsu M, Kanematsu Y, Hashimoto T. Elastase-induced intracranial aneurysms in hypertensive mice. Hypertension. 2009;54(6):1337–44. https://doi.org/10.1161/HYPERTENSIONAHA.109.138297 .
doi: 10.1161/HYPERTENSIONAHA.109.138297
pubmed: 19884566
Hosaka K, Downes DP, Nowicki KW, Hoh BL. Modified murine intracranial aneurysm model: aneurysm formation and rupture by elastase and hypertension. J Neurointerv Surg. 2014;6(6):474–9. https://doi.org/10.1136/neurintsurg-2013-010788 .
doi: 10.1136/neurintsurg-2013-010788
pubmed: 23943816
Huang J, Davis EC, Chapman SL, Budatha M, Marmorstein LY, Word RA, et al. Fibulin-4 deficiency results in ascending aortic aneurysms: a potential link between abnormal smooth muscle cell phenotype and aneurysm progression. Circ Res. 2010;106(3):583–92. https://doi.org/10.1161/CIRCRESAHA.109.207852 .
doi: 10.1161/CIRCRESAHA.109.207852
pubmed: 20019329
Garavello W, Maggioni D, Nicolini G, Motta L, Tredici G, Gaini R. Association between metalloproteinases 2 and 9 activity and ERK1/2 phosphorylation status in head and neck cancers: an ex vivo study. Oncol Rep. 2010;24(4):1073–8.
pubmed: 20811691
Li H, Xu H, Wen H, Liu T, Sun Y, Xiao N, et al. Overexpression of LH3 reduces the incidence of hypertensive intracerebral hemorrhage in mice. J Cereb Blood Flow Metab. 2019;39(3):547–61. https://doi.org/10.1177/0271678X18815791 .
doi: 10.1177/0271678X18815791
pubmed: 30516406
Yuan B, Fu F, Huang S, Lin C, Yang G, Ma K, et al. C5a/C5aR pathway plays a vital role in brain inflammatory injury via initiating Fgl-2 in intracerebral hemorrhage. Mol Neurobiol. 2017;54(8):6187–97.
doi: 10.1007/s12035-016-0141-7
pubmed: 27709492
Gould DB, Phalan FC, Breedveld GJ, van Mil SE, Smith RS, Schimenti JC, et al. Mutations in Col4a1 cause perinatal cerebral hemorrhage and porencephaly. Science. 2005;308(5725):1167–71.
doi: 10.1126/science.1109418
pubmed: 15905400
Gould DB, Phalan FC, van Mil SE, Sundberg JP, Vahedi K, Massin P, et al. Role of COL4A1 in small-vessel disease and hemorrhagic stroke. N Engl J Med. 2006;354(14):1489–96. https://doi.org/10.1056/NEJMoa053727 .
doi: 10.1056/NEJMoa053727
pubmed: 16598045
Lai JH, Luo SF, Hung LF, Huang CY, Lien SB, Lin LC, et al. Physiological concentrations of soluble uric acid are chondroprotective and anti-inflammatory. Sci Rep. 2017;7(1):2359–12. https://doi.org/10.1038/s41598-017-02640-0 .
doi: 10.1038/s41598-017-02640-0
pubmed: 28539647
pmcid: 5443811
Tyagi N, Gillespie W, Vacek JC, Sen U, Tyagi SC, Lominadze D. Activation of GABA-A receptor ameliorates homocysteine-induced MMP-9 activation by ERK pathway. J Cell Physiol. 2009;220(1):257–66. https://doi.org/10.1002/jcp.21757 .
doi: 10.1002/jcp.21757
pubmed: 19308943
pmcid: 2811271
DiCamillo SJ, Carreras I, Panchenko MV, Stone PJ, Nugent MA, Foster JA, et al. Elastase-released epidermal growth factor recruits epidermal growth factor receptor and extracellular signal-regulated kinases to down-regulate tropoelastin mRNA in lung fibroblasts. J Biol Chem. 2002;277(21):18938–46. https://doi.org/10.1074/jbc.M200243200 .
doi: 10.1074/jbc.M200243200
pubmed: 11889128