Imaging anatomy of the vertebral canal for trans-sacral hiatus puncture of the lumbar cistern.
anesthesia
caudal
lumbosacral plexus
sacrococcygeal region
sacrum
spinal puncture
Journal
Clinical anatomy (New York, N.Y.)
ISSN: 1098-2353
Titre abrégé: Clin Anat
Pays: United States
ID NLM: 8809128
Informations de publication
Date de publication:
Apr 2021
Apr 2021
Historique:
received:
05
03
2020
revised:
16
04
2020
accepted:
18
04
2020
pubmed:
24
4
2020
medline:
28
9
2021
entrez:
24
4
2020
Statut:
ppublish
Résumé
A standard lumbar puncture may be impossible for many anatomic or technical reasons. Previous accounts of caudal epidural anesthesia and other procedures via the sacral hiatus prompted us to test if image-guided percutaneous trans-sacral hiatus access to the lumbosacral subarachnoid cistern would be anatomically feasible. To study vertebral canal morphometry and curvature, we analyzed midsagittal computed tomography-myelogram images of 40 normal subjects and digitally measured sacral curvatures between S1 to S5 and S2 to S4 using two methods whereby a lower angle signifies a straighter sacrum. We measured midsagittal vertebral canal area, hiatus width, dural sac termination levels, and distance from sacral hiatus to the dural sac tip (needle distance). Subjects were F:M = 25:15, with a mean age of 44.9 years. The two S1-S5 full sacral curvature mean angles were 57.3° and 60.4°. Almost all sacral hiatuses were at S4, and dural sac terminations were at S1-S2. The mean S2-S4 sacral curvature was 25.1°, and the mean needle distance was 57.7 mm. Using two-way analysis of variance, there were significant sex differences for needle distances (p = .001), and full and limited sacral curvatures (p = .02, and p = .046, respectively). There were no significant linear regression correlations between age and sacral curvature, needle distance, canal area, or hiatus width. Therefore, despite a frequently prominent full sacral curvature, the combination of S1-S2 dural sac termination plus a relatively straight trajectory of the lower vertebral canal between S2 and S4 support the theoretical feasibility of percutaneous trans-sacral hiatus and vertebral canal access to the lumbosacral cistern using a standard spinal needle.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
348-356Informations de copyright
© 2020 Wiley Periodicals LLC.
Références
Abitbol, M. M. (1989). Sacral curvature and supine posture. American Journal of Physical Anthropology, 80, 379-389.
Abola, M. V., Teplensky, J. R., Cooperman, D. R., Bauer, J. M., & Liu, R. W. (2018). Pelvic incidence is associated with sacral curvature, sacroiliac joint angulation, and sacral ala width. Spine (Phila Pa 1976), 43, 1529-1535.
Aggarwal, A., Aggarwal, A. K., Harjeet, K., & Sahni, D. (2009). Morphometry of sacral hiatus and its clinical relevance in caudal epidural block. Surgical and Radiologic Anatomy, 31, 793-800.
Aggarwal, A., Kaur, H., Batra, Y. K., Aggarwal, A. K., Rajeev, S., & Sahni, D. (2009). Anatomic consideration of caudal epidural space: A cadaver study. Clinical Anatomy, 22, 730-737.
Ali, L., & Stocks, G. M. (2005). Spina bifida, tethered cord and regional anaesthesia. Anaesthesia, 60, 1149-1150.
Arnell, S. (1948). Myelography with water soluble contrast. Acta Radiologica Supplementum, 75, 5-79.
Asghar, A., & Naaz, S. (2013). The volume of the caudal space and sacral canal in human sacrum. Journal of Clinical and Diagnostic Research, 7, 2659-2660.
Bagheri, H., & Govsa, F. (2017). Anatomy of the sacral hiatus and its clinical relevance in caudal epidural block. Surgical and Radiologic Anatomy, 39, 943-951.
Boddu, S. R., Corey, A., Peterson, R., Saindane, A. M., Hudgins, P. A., Chen, Z., … Applegate, K. E. (2014). Fluoroscopic-guided lumbar puncture: Fluoroscopic time and implications of body mass index-A baseline study. American Journal of Neuroradiology, 35, 1475-1480.
Bodmer, A., Ross, S., Raabe, A., Beck, J., Ulrich, C. T., & Schucht, P. (2017). Virtual autopsy to assess sacral anatomy: Conditions for a minimal invasive approach to the spinal canal through the hiatus sacralis. Surgical Neurology International, 8, 290. https://doi.org/10.4103/sni.sni_313_17 eCollection 2017.
Bortolani, S., Stura, G., Ventilii, G., Vercelli, L., Rolle, E., Ricci, F., … Mongini, T. (2019). Intrathecal administration of nusinersen in adult and adolescent patients with spinal muscular atrophy and scoliosis: Transforaminal versus conventional approach. Neuromuscular Disorders, 29, 742-746.
Crighton, I. M., Barry, B. P., & Hobbs, G. J. (1997). A study of the anatomy of the caudal space using magnetic resonance imaging. British Journal of Anaesthesia, 78, 391-395.
Daniels, S. P., Schweitzer, A. D., Baidya, R., Krol, G., Schneider, R., Lis, E., & Levi Chazen, J. (2019). The lateral C1-C2 puncture: Indications, technique, and potential complications. American Journal of Roentgenology, 212, 431-442.
DonTigny, R. L. (1985). Function and pathomechanics of the sacroiliac joint. A review. Physical Therapy, 65, 35-44.
Engelborghs, S., Niemantsverdriet, E., Struyfs, H., Blennow, K., Brouns, R., Comabella, M., … Teunissen, C. E. (2017). Consensus guidelines for lumbar puncture in patients with neurological diseases. Alzheimers and Dementia (Amsterdam), 8, 111-126.
Gong, D., Yu, H., & Yuan, X. (2018). A new method of subarachnoid puncture for clinical diagnosis and treatment: Lateral atlanto-occipital space puncture. Journal of Neurosurgery, 129, 146-152.
Hudgins, P. A., Fountain, A. J., Chapman, P. R., & Shah, L. M. (2017). Difficult lumbar puncture: Pitfalls and tips from the trenches. American Journal of Neuroradiology, 38, 1276-1283.
Jacobson, J. P., Cristiano, B. C., & Hoss, D. R. (2020). Simple fluoroscopy-guided transforaminal lumbar puncture: Safety and effectiveness of a coaxial curved-needle technique in patients with spinal muscular atrophy and complex spines. American Journal of Neuroradiology, 41, 183-188.
Jones, S. B., Shaw, D. W., & Jacobson, L. E. (1997). A transsacral approach through the sacral hiatus for myelography. American Journal of Roentgenology, 169, 1179-1181.
Joo, J., Kim, J., & Lee, J. (2010). The prevalence of anatomical variations that can cause inadvertent dural puncture when performing caudal block in Koreans: A study using magnetic resonance imaging. Anaesthesia, 65, 23-26.
Kao, S. C., & Lin, C. S. (2017). Caudal epidural block: An updated review of anatomy and techniques. BioMed Research International, 2017, 9217145. https://doi.org/10.1155/2017/9217145
Khalaf, A. M., Yedavalli, V., & Massoud, T. F. (2019). Magnetic resonance imaging anatomy and morphometry of lumbar intervertebral foramina to guide safe transforaminal subarachnoid punctures. Clinical Anatomy, 33, 405-413. https://doi.org/10.1002/ca.23533
Kilicaslan, A., Keskin, F., Babaoglu, O., Gok, F., Erdi, M. F., Kaya, B., … Kacira, B. K. (2015). Morphometric analysis of the sacral canal and hiatus using multidetector computed tomography for interventional procedures. Turkish Neurosurgery, 25, 566-573.
Layer, L., Riascos, R., Firouzbakht, F., Amole, A., Von Ritschl, R., Dipatre, P., & Cuellar, H. (2011). Subarachnoid and basal cistern navigation through the sacral hiatus with guide wire assistance. Neurological Research, 33, 633-637.
Lee, H. J., Min, J. Y., Kim, H. I., & Byon, H. J. (2017). Measuring the depth of the caudal epidural space to prevent dural sac puncture during caudal block in children. Paediatric Anaesthesia, 27, 540-544.
Lee, K. C., Bamford, A., Gardiner, F., Agovino, A., Ter Horst, B., Bishop, J., … Moiemen, N. S. (2019). Investigating the intra- and inter-rater reliability of a panel of subjective and objective burn scar measurement tools. Burns, 45, 1311-1324.
Meyer, R. J. (1984). Dural puncture via the sacral hiatus. Anaesthesia, 39, 610.
Mourgela, S., Anagnostopoulou, S., Warnke, J. P., & Spanos, A. (2006). Thecaloscopy through sacral bone approaches, cadaver study: Further anatomic landmarks. Minimally Invasive Neurosurgery, 49, 30-33.
Nascene, D. R., Ozutemiz, C., Estby, H., McKinney, A. M., & Rykken, J. B. (2018). Transforaminal lumbar puncture: An alternative technique in patients with challenging access. American Journal of Neuroradiology, 39, 986-991.
Nastoulis, E., Karakasi, M. V., Pavlidis, P., Thomaidis, V., & Fiska, A. (2019). Anatomy and clinical significance of sacral variations: A systematic review. Folia Morphologica, 78, 651-667. https://doi.org/10.5603/FM.a2019.0040
Oh, S., Chung, K., Bang, S., Kim, S. Y., & Kwon, W. (2018). Alternative way to find sacral hiatus for blind caudal block - based on 3D pelvis CT anthropometry: A retrospective study. Medical Hypotheses, 121, 70-73.
Park, G. Y., Kwon, D. R., & Cho, H. K. (2015). Anatomic differences in the sacral hiatus during caudal epidural injection using ultrasound guidance. Journal of Ultrasound in Medicine, 34, 2143-2148.
Pokanan, S., Borsu, H., & Hansasuta, A. (2019). Spinal dural sac termination and internal filum terminale fusion: A study from 80 cadavers. Clinical Anatomy, 33, 558-561. https://doi.org/10.1002/ca.23438
Porzionato, A., Macchi, V., Parenti, A., & De Caro, R. (2011). Surgical anatomy of the sacral hiatus for caudal access to the spinal canal. Acta Neurochirurgica Supplement, 108, 1-3.
Price, C. M., Rogers, P. D., Prosser, A. S., & Arden, N. K. (2000). Comparison of the caudal and lumbar approaches to the epidural space. Annals of the Rheumatic Diseases, 59, 879-882.
Raghavan, N., Barkovich, A. J., Edwards, M., & Norman, D. (1989). MR imaging in the tethered spinal cord syndrome. American Journal of Roentgenology, 152, 843-852.
Riascos, R., Vu, L., Cuellar, H., Haberman, A., Nishino, T., & Layer, L. (2011). CT evaluation of caudal versus lumbar access to the intradural space. Neurological Research, 33, 1094-1098.
Saker, E., Henry, B. M., Tomaszewski, K. A., Loukas, M., Iwanaga, J., Oskouian, R. J., & Tubbs, R. S. (2017). The filum terminale internum and externum: A comprehensive review. Journal of Clinical Neuroscience, 40, 6-13.
Sanghvi, C., & Dua, A. (2020). Caudal anesthesia. In StatPearls. Treasure Island, FL: StatPearls Publishing; Retrieved from. https://www.ncbi.nlm.nih.gov/books/NBK551693/
Sekiguchi, M., Yabuki, S., Satoh, K., & Kikuchi, S. (2004). An anatomic study of the sacral hiatus: A basis for successful caudal epidural block. The Clinical Journal of Pain, 20, 51-54.
Senoglu, N., Senoglu, M., Oksuz, H., Gumusalan, Y., Yuksel, K. Z., Zencirci, B., … Kizilkanat, E. (2005). Landmarks of the sacral hiatus for caudal epidural block: An anatomical study. British Journal of Anaesthesia, 95, 692-695.
Sisson, S., & Grossman, J. D. (1953). The anatomy of domestic animals (4th ed.). Philadelphia, PA: Saunders.
Soleiman, J., Demaerel, P., Rocher, S., Maes, F., & Marchal, G. (2005). Magnetic resonance imaging study of the level of termination of the conus medullaris and the thecal sac: Influence of age and gender. Spine (Phila Pa 1976), 30, 1875-1880.
Steiner, D. L., Norman, G. R., & Cairney, J. (2015). Chapter 8: Reliability. Health measurement scales: A practical guide to their development and use (pp. 159-199). New York, NY: Oxford University Press.
Towbin, R., Schaefer, C., Kaye, R., Abruzzo, T., & Aria, D. J. (2019). The complex spine in children with spinal muscular atrophy: The transforaminal approach-A transformative technique. American Journal of Neuroradiology, 40, 1422-1426.
Varsos, G. V., Czosnyka, M., Smielewski, P., Garnett, M. R., Liu, X., Adams, H., … Czosnyka, Z. (2016). Cerebral critical closing pressure during infusion tests. Acta Neurochirurgica Supplement, 122, 215-220.
Viera, A. J., & Garrett, J. M. (2005). Understanding interobserver agreement: The kappa statistic. Family Medicine, 37, 360-363.
Wagner, D., Kamer, L., Sawaguchi, T., Richards, R. G., Noser, H., Hofmann, A., & Rommens, P. M. (2017). Morphometry of the sacrum and its implication on trans-sacral corridors using a computed tomography data-basedthree-dimensional statistical model. The Spine Journal, 17, 1141-1147.
Waldman, S. D. (2004). Caudal epidural nerve block: Prone position. In Atlas of interventional pain management (2nd ed., pp. 380-392). Philadelphia, PA: Saunders.
Ward, E., Orrison, W. W., & Watridge, C. B. (1989). Anatomic evaluation of cisternal puncture. Neurosurgery, 25, 412-415.
Weaver, J. J., Natarajan, N., Shaw, D. W. W., Apkon, S. D., KSH, K., Shivaram, G. M., & Monroe, E. J. (2018). Transforaminal intrathecal delivery of nusinersen using cone-beam computed tomography for children with spinal muscular atrophy and extensive surgical instrumentation: Early results of technical success and safety. Pediatric Radiology, 48, 392-397.