Big Data Analytics and Structural Health Monitoring: A Statistical Pattern Recognition-Based Approach.

Kullback–Leibler divergence big data large-scale bridges nearest neighbor statistical pattern recognition structural health monitoring time series analysis

Journal

Sensors (Basel, Switzerland)
ISSN: 1424-8220
Titre abrégé: Sensors (Basel)
Pays: Switzerland
ID NLM: 101204366

Informations de publication

Date de publication:
19 Apr 2020
Historique:
received: 20 03 2020
revised: 17 04 2020
accepted: 17 04 2020
entrez: 25 4 2020
pubmed: 25 4 2020
medline: 25 4 2020
Statut: epublish

Résumé

Recent advances in sensor technologies and data acquisition systems opened up the era of big data in the field of structural health monitoring (SHM). Data-driven methods based on statistical pattern recognition provide outstanding opportunities to implement a long-term SHM strategy, by exploiting measured vibration data. However, their main limitation, due to big data or high-dimensional features, is linked to the complex and time-consuming procedures for feature extraction and/or statistical decision-making. To cope with this issue, in this article we propose a strategy based on autoregressive moving average (ARMA) modeling for feature extraction, and on an innovative hybrid divergence-based method for feature classification. Data relevant to a cable-stayed bridge are accounted for to assess the effectiveness and efficiency of the proposed method. The results show that the offered hybrid divergence-based method, in conjunction with ARMA modeling, succeeds in detecting damage in cases strongly characterized by big data.

Identifiants

pubmed: 32325821
pii: s20082328
doi: 10.3390/s20082328
pmc: PMC7219663
pii:
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Références

Sensors (Basel). 2018 Apr 24;18(5):
pubmed: 29695067
Sensors (Basel). 2012;12(6):7318-25
pubmed: 22969347
Sensors (Basel). 2016 Oct 22;16(10):
pubmed: 27782088
Sensors (Basel). 2017 Sep 19;17(9):
pubmed: 28925943
Sensors (Basel). 2018 Aug 21;18(9):
pubmed: 30134539
Sensors (Basel). 2019 Apr 01;19(7):
pubmed: 30939722
Sensors (Basel). 2015 Apr 15;15(4):8832-51
pubmed: 25884788
Sensors (Basel). 2015 Jan 29;15(2):2980-98
pubmed: 25643056
Sensors (Basel). 2018 Dec 07;18(12):
pubmed: 30544485
Sensors (Basel). 2018 Nov 23;18(12):
pubmed: 30477190
Sensors (Basel). 2017 Feb 21;17(2):
pubmed: 28230796
Sensors (Basel). 2018 Sep 04;18(9):
pubmed: 30181525
Sensors (Basel). 2017 May 31;17(6):
pubmed: 28561786
Sensors (Basel). 2018 Dec 18;18(12):
pubmed: 30567331
Sensors (Basel). 2016 May 23;16(5):
pubmed: 27223289
Sensors (Basel). 2019 Jul 10;19(14):
pubmed: 31295926
Sensors (Basel). 2019 Aug 15;19(16):
pubmed: 31443244

Auteurs

Alireza Entezami (A)

Department of Civil and Environmental Engineering, Politecnico di Milano, 20133 Milano, Italy.
Department of Civil Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 9177948944, Iran.

Hassan Sarmadi (H)

Department of Civil Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 9177948944, Iran.

Behshid Behkamal (B)

Department of Computer Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 9177948944, Iran.

Stefano Mariani (S)

Department of Civil and Environmental Engineering, Politecnico di Milano, 20133 Milano, Italy.

Classifications MeSH